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   Introduction and  
      Fundamental Principles 
 
 
 

       .  .  .   
 
 

       The development of a relatively 
complete picture of the structure and evolution of the stars has been one of the great 
conceptual accomplishments of the twentieth century. While questions still exist 
concerning the details of the birth and death of stars, scientists now understand over 
90% of a star's life. Furthermore, our understanding of stellar structure has 
progressed to the point where it can be studied within an axiomatic framework 
comparable to those of other branches of Physics. It is within this axiomatic 
framework that we will study stellar structure stellar spectra - the traditional source 
of virtually all information about stars. 
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 This book is divided into two parts: stellar interiors and stellar atmospheres. 
While the division between the two is fairly arbitrary, it is a traditional division 
separating regimes where different axioms apply. A similar distinction exists 
between the continuum and lines of a stellar spectrum. These distinctions represent a 
transition zone where one physical process dominates over another. The transition in 
nature is never abrupt and represents a difference in degree rather than in kind. 
 
 We assume that the readers know what stars are, that is, have a working 
knowledge of the Hertzsprung-Russell diagram and of how the vast wealth of 
knowledge contained in it has been acquired. Readers should understand that most 
stars are basically spherical and should know something about the ranges of masses, 
radii, and luminosities appropriate for the majority of stars. The relative size and 
accuracy of the stellar sample upon which this information is based must be 
understood before a theoretical description of stars can be believed. However, the 
more we learn about stars, the more the fundamentals of our theoretical descriptions 
are confirmed. The history of stellar astrophysics in the twentieth century can be 
likened to that of a photographer steadily sharpening the focus of the camera to 
capture the basic nature of stars. 
 
 In this book, the basic problem of stellar structure under consideration is the 
determination of the run of physical variables that describe the local properties of 
stellar material with position in the star. In general, the position in the star is the 
independent variable(s) in the problem, and other parameters such as the pressure P, 
temperature T, and density ρ are the dependent variables. Since these parameters 
describe the state of the material, they are often referred to as state variables. Part I of 
this book discusses these parameters alone. In Part II, when we arrive near the 
surface of the star, we shall also be interested in the detailed distribution of the 
photons, particularly as they leave the star.  
 
 Although there are some excursions into the study of nonspherical stars, the 
main thrust of this book is to provide a basis for understanding the structure of 
spherical stars. Although the proof is not a simple one, it would be interesting to 
show that the equilibrium configuration of a gas cloud confined solely by gravity is 
that of a sphere. However, instead of beginning this book with a lengthy proof, we 
simply take the result as an axiom that all stars dominated by gravity alone are 
spherical. 
 
 We describe these remarkably stable structures in terms of microphysics, 
involving particles and photons which are largely in equilibrium. Statistical 
mechanics is the general area of physics that deals with this subject and contains the 
axioms that form the basis for stellar astrophysics. Our discussion of stellar structure 
centers on the interaction of light with matter. We must first describe the properties 
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of the space in which the interaction will take place. It is not the normal Euclidean 
three-dimensional space of intuition, but a higher-dimension space. This higher-
dimension space, called phase space, includes the momentum distribution of the 
particles which make up the star as well as their physical location. 
 
1.1   Stationary or "Steady" Properties of Matter 
 
  a. Phase Space and Phase Density 
 
  Consider a volume of physical space that is small compared to the 
physical system in question, but still large enough to contain a statistically significant 
number of particles. The range of physical space in which this small volume is 
embedded may be infinite or finite as long as it is significantly larger than the small 
volume. First let a set of three Cartesian coordinates x1, x2, and x3 represent the 
spatial part of the volume. Then allow the additional three Cartesian coordinates v1, 
v2, and v3 represent the components of the velocity of the particles. Coordinates v1, 
v2, and v3 are orthogonal to the spatial coordinates. This simply indicates that the 
velocity and position are assumed to be uncorrelated. It also provides for a six-
dimensional space which we call phase space. The volume of the space is  
 

 dV = dx1dx2dx3dv1dv2dv3                                    (1.1.1) 

 
Figure 1.1 shows part of a small differential volume of phase space. 

It must be remembered that the position and velocity 
coordinates are orthogonal to each other.  
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If the number of particles in the small volume dV is N, then we can define a 
parameter f, known as the phase density, by 
 

 f (x1,x2,x3,v1,v2,v3)dV = N                                        (1.1.2) 
 
The manner in which a number of particles can be arranged in an ensemble of phase 
space volumes is described in Figure 1.1. 
 
   b.   Macrostates and Microstates 
 
  A macrostate of a system is said to be specified when the number of 
particles in each phase space volume dV is specified. That is, if the phase density is 
specified everywhere, then the macrostate of the system has been specified. Later we 
shall see how the phase density can be used to specify all the physical properties of 
the system. 
 
 To discuss the notion of a microstate, it must be assumed that there is a 
perceptible difference between particles, because in a microstate, in addition to the 
number of particles in each volume, it makes a difference which particles are in 
which volumes. If the specification of individual particles can be accomplished, then 
it can be said that a microstate has been specified. Clearly one macrostate could 
consist of many microstates. For example, the number of balls on a pool table might 
be said to be a macrostate, whereas the specification of which balls they are would 
denote a specific microstate. In a similar manner, the distribution of suits of playing 
cards in a bridge hand might be said to represent a macrostate, but the specific cards 
in each suit would specify the microstate. 
 
  c.  Probability and Statistical Equilibrium 
 
  If we were to create macrostates by assembling particles by randomly 
throwing them into various microstates, then the macrostate most likely to occur is 
the one with the greatest number of microstates. That is why a bridge hand consisting 
of 13 spades occurs so rarely compared to a hand with four spades and three hearts, 
three diamonds, or three clubs. If we consider a system where the particles are 
continually moving from one phase space volume to another, say, by collisions, then 
the most likely macrostate is the one with the largest number of associated 
microstates. There is an implicit assumption here that all microstates are equally 
probable. Is this reasonable? 
  
  Imagine a case where all the molecules in a room are gathered in one corner. 
This represents a particular microstate; a particularly unlikely one, we would think. 
Through random motions, it would take an extremely long time for the particles to 
return to that microstate. However, given the position and velocity of each particle in 
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an ordinary room of gas, is this any more unlikely than each particle to returning to 
that specific position with the same velocity? The answer is no. Thus, if each 
microstate is equally probable, then the associated macrostates are not equally 
probable and it makes sense to search for the most probable macrostate of a system. 
In a system which is continually rearranging itself by collisions, the most probable 
macrostate becomes the most likely state in which to find the system. A system 
which is in its most probable macrostate is said to be in statistical equilibrium. 
  
 Many things can determine the most probable macrostate. Certainly the total 
number of particles allowed in each microstate and the total number of particles 
available to distribute will be important in determining the total number of 
microstates in a given macrostate. In addition, quantum mechanics places some 
conditions on our ability to distinguish particles and even limits how many of certain 
kinds of particles can be placed in a given volume of phase space. But, for the 
moment, let us put aside these considerations and concentrate on calculating the 
number of microstates in a particular macrostate.  

 
Figure 1.2 Shows a phase space composed of only two cells in which 

four particles reside. All possible macrostates are illustrated.  
 
 Consider a simple system consisting of only two phase space volumes and 
four particles (see Figure 1.2). There are precisely five different ways that the four 
particles can be arranged in the two volumes. Thus there are five macrostates of the 
system. But which is the most probable? Consider the second macrostate in Figure 
1.2 (that is, N1 = 3, N2 = 1). Here we have three particles in one volume and one 
particle in the other volume. If we regard the four particles as individuals, then there 
are four different ways in which we can place those four particles in the two volumes 
so that one volume has three and the other volume has only one (see Figure 1.3). 
Since the order in which the particles are placed in the volume does not matter, all 
permutations of the particles in any volume must be viewed as constituting the same 
microstate. 
 
 Now if we consider the total number of particles N to be arranged 
sequentially among m volumes, then the total number of sequences is simply N!. 
However, within each volume (say, the ith volume), Ni particles yield Ni! 
indistinguishable sequences which must be removed when the allowed number of 
microstates is counted. Thus the total number of allowed microstates in a given 
macrostate is 
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                                                          (1.1.3)  

    
 

Figure 1.3 Consider one of the macrostates in figure 1.2, specifically 
the state where N1 = 3, and N2 = 1. All the allowed 
microstates for distinguishable particles are shown. 

 
 For the five macrostates shown in Figure 1.2, the number of possible 
microstates is 




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1!4!0/!4W
4!3!1/!4W
6!2!2/!4W
4!1!3/!4W
1!0!4/!4W

4,0

3,1

2,2

1,3

0,4

                                             (1.1.4) 

Clearly W2, 2 is the most probable macrostate of the five. The particle distribution of 
the most probable macro state is unique and is known as the equilibrium macrostate. 
 
 In a physical system where particle interactions are restricted to those 
between particles which make up the system, the number of microstates within the 
system changes after each interaction and, in general, increases, so that the 
macrostate of the system tends toward that with the largest number of microstates - 
the equilibrium macrostate. In this argument we assume that the interactions are 
uncorrelated and random. Under these conditions, a system which has reached its 
equilibrium macrostate is said to be in strict thermodynamic equilibrium. Note that 
interactions among particles which are not in strict thermodynamic equilibrium will 
tend to drive the system away from strict thermodynamic equilibrium and toward a 
different statistical equilibrium distribution. This is the case for stars near their 
surfaces.  
  The statistical distribution of microstates versus macrostates given by 
equation (1.1.3) is known as Maxwell-Boltzmann statistics and it gives excellent 
results for a classical gas in which the particles can be regarded as distinguishable. In 
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a classical world, the position and momentum of a particle are sufficient to make it 
distinguishable from all other particles. However, the quantum mechanical picture of 
the physical world is quite different. So far, we have neglected both the Heisenberg 
uncertainty principle and the Pauli Exclusion Principle. 
    
 
  d.   Quantum Statistics 
 
  Within the realm of classical physics, a particle occupies a point in 
phase space, and in some sense all particle are distinguishable by their positions and 
velocities. The phase space volumes are indeed differential and arbitrarily small. 
However, in the quantum mechanical view of the physical world, there is a limit to 
how well the position and momentum (velocity, if the mass is known) of any particle 
can be determined. Within that phase space volume, particles are indistinguishable. 
This limit is known as the Heisenberg uncertainty principle and it is stated as 
follows: 
  

 ∆p∆x  ≥ h/2π  ≡ h                                                 ( 1.1.5) 
 
Thus the minimum phase space volume which quantum mechanics allows is of the 
order of h3. To return to our analogy with Maxwell-Boltzmann statistics, let us 
subdivide the differential cell volumes into compartments of size h3 so that the total 
number of compartments is  
  

 n = dx1dx2dx3dp1dp2dp3 / h3                                          (1.1.6) 
 
Let us redraw the example in Figure 1.3 so that each cell in phase space is subdivided 
into four compartments within which the particles are indistinguishable. Figure 1.4 
shows the arrangement for the four particles for the W3,1 macrostate for which there 
were only four allowed microstates under Maxwell-Boltzmann Statistics. Since the 
particles are now distinguishable within a cell, there are 20 separate ways to arrange 
the three particles in volume 1 and 4 ways to arrange the single particle in volume 2. 
The total number of allowed microstates for W3,1 is 20×4, or 80. Under these 
conditions the total number of microstates per macrostate is 
  

 W = ∏ Wi   ,                                                  (1.1.7) 

                                                                   i  
where Wi is the number of microstates per cell of phase space, which can be 
expressed in terms of the number of particles Ni in that cell.  
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Figure 1.4  The same macrostate as figure 1.3 only now the cells of 

phase space are subdivided into four compartments within 
which particles are indistinguishable. All of the possible 
microstates are shown for the four particles. 

 
 Let us assume that there are n compartments in the ith cell which contains Ni 
particles. Now we have to arrange a sequence of n + Ni objects, since we have to 
consider both the particles and the compartments into which they can be placed. 
However, not all sequences are possible since we must always start a sequence with 
a compartment. After all we have to put the particle somewhere! Thus there are n 
sequences with Ni + n-1 items to be further arranged. So there are n[Ni + n-1]! 
different ways to arrange the particles and compartments. We must eliminate all the 
permutations of the compartments because they reside within a cell and therefore 
represent the same microstate. But there are just n! of these. Similarly, the order in 
which the particles are added to the cell volume is just as irrelevant to the final 
microstate as it was under Maxwell-Boltzmann statistics. And so we must eliminate 
all the permutations of the Ni particles, which is just Ni!. Thus the number of 
microstates allowed for a given macrostate becomes 
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                     WB-E = ∏ n(Ni+n-1)! / Ni!n! = ∏(Ni+n-1)! / Ni!(n-1)!                   (1.1.8) 

                                  i                                    i   
The subscript "B-E" on W indicates that these statistics are known as Bose-Einstein 
statistics which allow for the Heisenberg uncertainty principle and the associated 
limit on the distinguishability of phase space volumes. We have assumed that an 
unlimited number of particles can be placed within a volume h3 of phase space, and 
those particles for which this is true are called bosons. Perhaps the most important 
representatives of the class of particles for stellar astrophysics are the photons. Thus, 
we may expect the statistical equilibrium distribution for photons to be different from 
that of classical particles described by Maxwell-Boltzmann statistics. 
  
 Within the domain of quantum mechanics, there are further constraints to 
consider. Most particles such as electrons and protons obey the Pauli Exclusion 
Principle, which basically says that there is a limit to the number of these particles 
that can be placed within a compartment of size h3. Specifically, only one particle 
with a given set of quantum numbers may be placed in such a volume. However, two 
electrons which have their spins arranged in opposite directions but are otherwise 
identical can fit within a volume h3 of phase space. Since we can put no more than 
two of these particles in a compartment, let us consider phase space to be made up of 
2n half-compartments which are either full or empty. We could say that there are no 
more than 2n things to be arranged in sequence and therefore no more than 2n! 
allowed microstates. But, since each particle has to go somewhere, the number of 
filled compartments which have Ni! indistinguishable permutations are just Ni. 
Similarly, the number of indistinguishable permutations of the empty compartments 
is (2n - Ni)!. Taking the product of all the allowed microstates for a given macrostate, 
we find that the total number of allowed microstates is 
  

 WF-D = ∏(2n)! / Ni!(2n-Ni)!                                          (1.1.9) 

                              i   
The subscript "F-D" here refers to Enrico Fermi and P.A.M. Dirac who were 
responsible for the development of these statistics. These are the statistics we can 
expect to be followed by an electron gas and all other particles that obey the Pauli 
Exclusion Principle. Such particles are normally called fermions. 
   
  e.   Statistical Equilibrium for a Gas 
 
  To find the macrostate which represents a steady equilibrium for a 
gas, we follow basically the same procedures regardless of the statistics of the gas. In 
general, we wish to find that macrostate for which the number of microstates is a 
maximum. So by varying the number of particles in a cell volume we will search for  
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dW = 0. Since lnW is a monotonic function of W, any maximum of lnW is a 
maximum of W. Thus we use the logarithm of equations (1.1.7) through (1.1.9) to 
search for the most probable macrostate of the distribution functions. These are 

 

                ln W                (1.1.10) 
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The use of logarithms also makes it easier to deal with the factorials through the use 
of Stirling's formula for the logarithm of a factorial of a large number. 
 

lnN!  ≈  N lnN – N                                             (1.1.11) 
 
For a given volume of gas, dN = dn = 0. The variations of equations (1.1.10) become 
 
                   δln WM-B = ΣlnNidNi = 0 

                i 
            δln WB-E = Σln[(n+Ni)/Ni]dNi = 0                                          (1.1.12) 

                                                 i                           
                 δln WF-D = Σln[(2n-Ni)/Ni]dNi = 0      

                       i  
 These are the equations of condition for the most probable macrostate for the 
three statistics which must be solved for the particle distribution Ni. We have 
additional constraints, which arise from the conservation of the particle number and 
energy, on the system which have not been directly incorporated into the equations 
of condition. These can be stated as follows: 
    
                      δ[ ΣNi ] = δN = 0 ,  δ [ ΣwiNi  ] = Σ wiδNi = 0    ,                        (1.1.13) 

                  i                  i                i   
where wi is the energy of an individual particle. Since these additional constraints 
represent new information about the system, we must find a way to incorporate them 
into the equations of condition. A standard method for doing this is known as the 
method of Lagrange multipliers. Since equations (1.1.13) represent quantities which 
are zero we can multiply them by arbitrary constants and add them to equations 
(1.1.12) to get 
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 M-B:                              Σ[ ln Ni – ln α1 + β1wi ]δNi = 0             

                        i                                          
 B-E:                                 Σ{ln [ (n + Ni) / Ni ] – ln α2 - β2wi  }δNi = 0     (1.1.14)         

                                             i                                          
 F-D:         Σ{ln [ ( 2n - Ni ) / Ni] – ln α3 - β3wi }dNi = 0   

                i  
Each term in equations (1.1.14) must be zero since the variations in Ni are arbitrary 
and any such variation must lead to the stationary, most probable, macrostate. 
 
Thus, 
 
 M-B:       Ni/α1 = exp(-wiβ1)         
                                    
 B-E:                                        n/Ni  = α2exp(wiβ2) – 1                                 (1.1.15) 
                                          
 F-D:                  2n/Ni =α3exp(wiβ3) + 1 
    
 
 All that remains is to develop a physical interpretation of the undetermined 
parameters αj and βj. Let us look at Maxwell-Boltzmann statistics for an example of 
how this is done. Since we have not said what β1 is, let us call it 1/(kT). Then 
 

 Ni = α1e-wi/(kT)                                          (1.1.16) 
 
If the cell volumes of phase space are not all the same size, it may be necessary to 
weight the number of particles to adjust for the different cell volumes. We call these 
weight functions gi. The 

               N = ΣgiNi = α1Σ gie-wi/(kT) ≡ α1U(T)               (1.1.17) 

                 i              i 

   The parameter U(T) is called the partition function and it depends on the 
composition of the gas and the parameter T alone. Now if the total energy of the gas 
is E, then 

E = Σgi wi Ni = Σwi gi α1 e-wi / kT= [Σwi gi Ne-wi / kT] / U(T) = NkT [ dlnU/dlnT ] 
       i                 i                                i       
                                        (1.1.18) 
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For a free particle like that found in a monatomic gas, the partition function1 is (see 
also section 11.1b) 

 V
h

)mkT2()T(U 3

2
3

π
=    ,                                       (1.1.19) 

 
where V is the specific volume of the gas, m is the mass of the particle, and T is the 
kinetic temperature. Replacing dlnU/dlnT in equation (1.1.18) by its value obtained 
from equation (1.1.19), we get the familiar relation 
 

NkT
2
3E =     ,                                            (1.1.20) 

 
which is only correct if T is the kinetic temperature. Thus we arrive at a self-
consistent solution if the parameter T is to be identified with the kinetic temperature. 
 
 The situation for a photon gas in the presence of material matter is somewhat 
simpler because the matter acts as a source and sinks for photons. Now we can no 
longer apply the constraint dN = 0. This is equivalent to adding lnα2= 0  (i.e., α2 = 1) 
to the equations of condition. If we let β2 = 1/(kT) as we did with the Maxwell-
Boltzmann statistics, then the appropriate solution to the Bose-Einstein formula 
[equation (1.1.15)] becomes   

1e

1
n
N

)kT(
h

i

−
= ν ,                                            (1.1.21)   

where the photon energy wi has been replaced by hν. Since two photons in a volume 
h3 can be distinguished by their state of polarization, the number of phase space 
compartments is 

 n = (2/h3)dx1dx2dx3dp1dp2dp3                                 (1.1.22) 
 
 We can replace the rectangular form of the momentum volume dp1dp2dp3, by 
its spherical counterpart 4πp2dp and remembering that the momentum of a photon is 
hν/c, we get 

ν
−

πν
= ν d

1e

1
c

8
V

dN
)kT(

h3

2

     .                            (1.1.23) 

Here we have replaced Ni with dN. This assumes that the number of particles in any 
phase space volume is small compared to the total number of particles. Since the 
energy per unit volume dEν is just hν dN/V, we get the relation known as Planck's 
law or sometimes as the blackbody law: 
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)T(B
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π

≡ν
−

νπ
=                      (1.1.24) 

  
The parameter Bν(T) is known as the Planck function. This, then, is the distribution 
law for photons which are in strict thermodynamic equilibrium. If we were to 
consider the Bose-Einstein result for particles and let the number of Heisenberg 
compartments be much larger than the number of particles in any volume, we would 
recover the result for Maxwell-Boltzmann statistics. This is further justification for 
using the Maxwell-Boltzmann result for ordinary gases. 
 
 
  f.   Thermodynamic Equilibrium - Strict and Local 
 
  Let us now consider a two-component gas made up of material 
particles and photons. In stars, as throughout the universe, photons outnumber 
material particles by a large margin and continually undergo interactions with matter. 
Indeed, it is the interplay between the photon gas and the matter which is the primary 
subject of this book. If both components of the gas are in statistical equilibrium, then 
we should expect the distribution of the photons to be given by Planck's law and the 
distribution of particle energies to be given by the Maxwell-Boltzmann statistics. In 
some cases, when the density of matter becomes very high and the various cells of 
phase space become filled, it may be necessary to use Fermi-Dirac statistics to 
describe some aspects of the matter. When both the photon and the material matter 
components of the gas are in statistical equilibrium with each other, we say that the 
gas is in strict thermodynamic equilibrium. If, for what- ever reason, the photons 
depart from their statistical equilibrium (i.e., from Planck's law), but the material 
matter continues to follow Maxwell-Boltzmann Statistics (i.e., to behave as if it were 
still in thermodynamic equilibrium), we say that the gas (material component) is in 
local thermodynamic equilibrium (LTE). 
 
 

1.2  Transport Phenomena  
 
  a.  Boltzmann Transport Equation 
 
  It is one thing to describe the behavior of matter and photons in 
equilibrium, but stars shine. Therefore energy must flow from the interior to the 
surface regions of the star and the details of the flow play a dominant role in 
determining the resultant structure and evolution of the star. We now turn to an 
extremely simple description of how this flow can be quantified; this treatment is due 
to Ludwig Boltzmann and should not be confused with the Boltzmann formula of 
Maxwell-Boltzmann statistics. Although the ideas of Boltzmann are conceptually  
 



1. Introduction and Fundamental Principles 
 

 15

simple, many of the most fundamental equations of theoretical physics are obtained 
from them.  
 
 Basically the Boltzmann transport equation arises from considering what can 
happen to a collection of particles as they flow through a volume of phase space. Our 
prototypical volume of phase space was a six-dimensional "cube", which implies that 
it has five-dimensional "faces". The Boltzmann transport equation basically 
expresses the change in the phase density within a differential volume, in terms of 
the flow through these faces, and the creation or destruction of particles within that 
volume. 
 
 For the moment, let us call the six coordinates of this space xi remembering 
that the first three refer to the spatial coordinates and the last three refer to the 
momentum coordinates. If the "area" of one of the five-dimensional "faces" is A, the 
particle density is N/V, and the flow velocity is v , then the inflow of particles across 
that face in time dt is   

                                      (1.2.1) 
Similarly, the number of particles flowing out of the opposite face located dxi away 
is 

                           (1.2.2) 
The net change due to flow in and out of the six-dimensional volume is obtained by 
calculating the difference between the inflow and outflow and summing over all 
faces of the volume: 

                   (1.2.3) 
 
 Note that the sense of equation (1.2.3) is such that if the inflow exceeds the 
outflow, the net flow is considered negative. Now this flow change must be equal to 
the negative time rate of change of the phase density (i.e., df/dt). We can split the 
total time rate of change of the phase density into that part which represents changes 
due to the differential flow «f/«t and that part which we call the creation rate S. 
Equating the flow divergence with the local temporal change in the phase density, we 
have 
 

                     (1.2.4) 
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Rewriting our phase space coordinates xi in terms of the spatial and momentum 
coordinates and using the old notation of Isaac Newton to denote total differentiation 
with respect to time (i.e., the dot .) we get 

                        (1.2.5) 
            This is known as the Boltzmann transport equation and can be written in 
several different ways. In vector notation we get 

                                                                  (1.2.6) 

Here the potential gradient ∇Φ has replaced the momentum time derivative while ∇v 
is a gradient with respect to velocity. The quantity m is the mass of a typical particle. 
It is also not unusual to find the Boltzmann transport equation written in terms of the 
total Stokes time derivative 

                                                                                         (1.2.7) 

If we take to be a six dimensional "velocity" and ∇to be a six- dimensional 
gradient, then the Boltzmann transport equation takes the form 

vr

 

                                                                                                    (1.2.8) 

Although this form of the Boltzmann transport equation is extremely general, much 
can be learned from the solution of the homogeneous equation. This implies that     S 
= 0 and that no particles are created or destroyed in phase space. 
 
 
  b. Homogeneous Boltzmann Transport Equation and  
    Liouville's  Theorem 
 
  Remember that the right-hand side of the Boltzmann transport 
equation is a measure of the rate at which particles are created or destroyed in the 
phase space volume. Note that creation or destruction in phase space includes a good 
deal more than the conventional spatial creation or destruction of particles. To be 
sure, that type of change is included, but in addition processes which change a 
particle's position in momentum space may move a particle in or out of such a 
volume. The detailed nature of such processes will interest us later, but for the 
moment let us consider a common and important form of the Boltzmann transport 
equation, namely that where the right-hand side is zero. This is known as the 
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homogeneous Boltzmann transport equation. It is also better known as Liouville's 
theorem of statistical mechanics. In the literature of stellar dynamics, it is also 
occasionally referred to as Jeans' theorem2 for Sir James Jeans was the first to 
explore its implications for stellar systems. By setting the right-hand side of the 
Boltzmann transport equation to zero, we have removed the effects of collisions from 
the system, with the result that the density of points in phase space is constant. 
Liouville's theorem is usually generalized to include sets or ensembles of particles. 
For this generalization phase space is expanded to 6N dimensions, so that each 
particle of an ensemble has six position and momentum coordinates which are 
linearly independent of the coordinates of every other particle. This space is often 
called configuration space, since the entire ensemble of particles is represented by a 
point and its temporal history by a curve in this 6N-dimensional space. Liouville's 
theorem holds here and implies that the density of points (ensembles) in 
configuration space is constant. This, in turn, can be used to demonstrate the 
determinism and uniqueness of Newtonian mechanics. If the configuration density is 
constant, it is impossible for two ensemble paths to cross, for to do so, one path 
would have to cross a volume element surrounding a point on the other path, thereby 
changing the density. If no two paths can cross, then it is impossible for any two 
ensembles to ever have exactly the same values of position and momentum for all 
their particles. Equivalently, the initial conditions of an ensemble of particles 
uniquely specify its path in configuration space. This is not offered as a rigorous 
proof, only as a plausibility argument. More rigorous proofs can be found in most 
good books on classical mechanics3,4. Since Liouville’s theorem deals with 
configuration space, it is sometimes considered more fundamental than the 
Boltzmann transport equation; but for our purposes the expression containing the 
creation rate S will be required and therefore will prove more useful. 
 
 
  c.  Moments of the Boltzmann Transport Equation and  
   Conservation  Laws 
 
  By the moment of a function we mean the integral of some property 
of interest, weighted by its distribution function, over the space for which the 
distribution function is defined. Common examples of such moments can be found in 
statistics. The mean of a distribution function is simply the first moment of the 
distribution function, and the variance can be simply related to the second moment. 
In general, if the distribution function is analytic, all the information contained in the 
function is also contained in the moments of that function. 
 
 The complete solution to the Boltzmann transport equation is, in general, 
extremely difficult and usually would contain much more information about the 
system than we wish to know. The process of integrating the function over its 
defined space to obtain a specific moment removes or averages out much of the  
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information about the function. However, this process also usually yields equations 
which are much easier to solve. Thus we trade off information for the ability to solve 
the resulting equations, and we obtain some explicit properties of the system of 
interest. This is a standard "trick" of mathematical physics and one which is 
employed over and over throughout this book. Almost every instance of this type 
carries with it the name of some distinguished scientist or is identified with some 
fundamental conservation law, but the process of its formulation and its origin are 
basically the same. 
  
 We define the nth moment of a function f as 
   

∫= dx)x(fx)]x(f[M n
n .                                                        (1.2.9)  

 By multiplying the Boltzmann equation by powers of the position and velocity and 
integrating over the appropriate dimensions of phase space, we can generate 
equations relating the various moments of the phase density )v,x(f rr . In general, such 
a process always generates two moments of different order n, so that a succession of 
moment taking always generates one more moment than is contained in the resulting 
equations. Some additional property of the system will have to be invoked to relate 
the last generated higher moment to one of lower order, in order to close the system 
of equations and allow for a solution. To demonstrate this process, we show how the 
equation of continuity, the Euler-Lagrange equations of hydrodynamic flow, and the 
virial theorem can all be obtained from moments of the Boltzmann transport 
equation. 
 
 Continuity Equation and the Zeroth Velocity Moment  Although most 
moments, particularly in statistics, are normalized by the integral of the distribution 
function itself, we have chosen not to do so here because the integral of the phase 
density f over all velocity space has a particularly important physical meaning, 
namely, the local spatial density. 
 

                                                                             (1.2.10) 
By we mean that the integration is to be carried out over all three velocity 
coordinates v

vdr

1, v2, and v3. A pedant might correctly observe that the velocity 
integrals should only range from -c to +c, but for our purposes the Newtonian view 
will suffice. Integration over momentum space will properly preserve the limits. 
Now let us integrate the component form of equation (1.2.5) over all velocity space 
to generate an equation for the local density. Thus, 
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           (1.2.11) 
 Since the velocity and space coordinates are linearly independent, all time 
and space operators are independent of the velocity integrals. The integral of the 
creation rate S over all velocity space becomes simply the creation rate for particles 
in physical space, which we call ℑ. By noting that the two summations in equation 
(1.2.11) are essentially scalar products, we can rewrite that moment and get       

                                (1.2.12) 
It is clear from the definition of ρ that the first term is the partial derivative of the 
local particle density. The second term can be modified by use of the vector identity 

                                                                            (1.2.13) 
rand by noting that ∇ , since space and velocity coordinates are independent. 

If the particles move in response, to a central force, then we may relate their 
accelerations  to the gradient of a potential which depends on only position and not 
velocity. The last term then takes the form  

0v =•

v&r

∫∇•Φ•∇ vd)v(f)m/ v( r . If we further 
require that f(v) be bounded (i.e., that there be no particles with infinite velocity), 
then since the integral and gradient operators basically undo each other, the integral 
and hence the last term of equation (1.2.12) vanish, leaving 

                                                                     (1.2.14) 
     The second term in equation (1.2.14) is the first velocity moment of the phase 
density and illustrates the manner by which higher moments are always generated by 
the moment analysis of the Boltzmann transport equation. However, the physical 
interpretation of this moment is clear. Except for a normalization scalar, the second 
term is a measure of the mean flow rate of the material. Thus, we can define a mean 
flow velocity  u                     r

                                                       (1.2.15) 
which, upon multiplying by the particle mass, enables us to obtain the familiar form 
of the equation of continuity: 
 

                                                         (1.2.16) 
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This equation basically says that the explicit time variation of the density plus 
density changes resulting from the divergence of the flow is equal to the local 
creation or destruction of material ℑ. 
 
 Euler-Lagrange Equations of Hydrodynamic Flow and the First Velocity 
Moment of the Boltzmann Transport Equation The zeroth moment of the transport 
equation provided insight into the way in which matter is conserved in a flowing 
medium. Multiplying the Boltzmann transport equation by the velocity and 
integrating over all velocity space will produce momentum-like moments, and so we 
might expect that such operations will also produce an expression of the conservation 
of momentum. This is indeed the case. However, keep in mind that the velocity is a 
vector quantity, and so the moment analysis will produce a vector equation rather 
than the scalar equation, as was the case with the equation of continuity. Multiplying 
the Boltzmann transport equation by the local particle velocity vr , we get 

(1.2.17) 
            We can make use of most of the tricks that were used in the derivation of the 
continuity equation (1.2.16). The first term can be expressed in terms of the mean 
flow velocity [equation (1.2.15)] while the second term can be expressed as      

                                                                                (1.2.18) 
 by using the vector identity given by equation (1.2.13). Since the quantity in 
parentheses of the third term in equation (1.2.17) is a scalar and since the particle 
accelerations depend on position only, we can move them and the vector scalar 
product outside the velocity integral and re-express them in terms of a potential, so 
the third term becomes 

                                                                                  
                                                                                                                       (1.2.19) 
  The integrand of equation (1.2.19) is not a simple scalar or vector, but is the 
vector outer, or tensor, product of the velocity gradient of f with the vector velocity vr  
itself. However, the vector identity given by equation (1.2.13) still applies if the 
scalar product is replaced with the vector outer product, so that the integrand in 
equation (1.2.19) becomes 

                                                      (1.2.20) 
 
The quantity 1 is the unit tensor and has elements of the Kronecker delta δi j whose 
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elements are zero when i ≠ j and 1 when i = j. Again, as long as f is bounded, the 
integral over all velocity space involving the velocity gradient of f will be zero, and 
the first velocity moment of the Boltzmann transport equation becomes   

 

              (1.2.21) 
Differentiating the first term and using the continuity equation (1.2.14) to eliminate  

t/n ∂∂ , we get 

   (1.2.22) 
 Since ∇  is zero and the velocity and space coordinates are independent, we may 
rewrite the third term in terms of a velocity tensor defined as  

vr•

     

                                                                              (1.2.23) 
Some rearranging and the use of a few vector identities lead to         

      (1.2.24) 
 The quantity in brackets of the third term is sometimes called the pressure 
tensor. A density ρ times a velocity squared is an energy density, which has the units 
of pressure. We can rewrite that term so it has the form 

                                                                   (1.2.25) 
 which shows the form of a moment of f. In this instance the moment is a tensor that 
more or less describes the difference between the local flow indicated by r  and the 
mean flow . The form of the moment is that of a variance, and the tensor, in 
general, consists of nine components. Each component measures the net momentum 
transfer (or contribution to the local energy density) across a surface associated with 
that coordinate which results from the net flow coming from another coordinate. 
Thus the third term is simply the divergence of the pressure tensor which is a vector 
quantity, and the first velocity moment of the Boltzmann transport equation becomes 

v
ur

    



 

 22

1 Stellar Interiors 

          .   (1.2.26) 
This set of vector equations is known as the Euler-Lagrange equations of 
hydrodynamic flow and they are derived here in their most general form. 
 
 It is common to make some further assumptions concerning the flow to 
further simplify these flow equations. If we consider the common physical situation 
where there are many collisions in the gas, then there is a tendency to randomize the 
local velocity field r  and thus to make v )v(f)v(f rr

−= . Under these conditions, the 
pressure tensor becomes diagonal, all elements are equal, and its divergence can be 
written as the gradient of some scalar which we call the pressure P. In addition, the 
creation rate S in equation (1.2.26) which involves the effects of collisions will also 
become symmetric in velocity, which means that the entire integral over velocity 
space will vanish. This single assumption leads to the simpler and more familiar 
expression for hydrodynamic flow, namely 

                                                                  (1.2.27) 
This assumption is necessary to close the moment analysis in that it provides a 
relationship between the pressure tensor and the scalar pressure P. From the 
definition of the pressure tensor, under the assumption of a nearly isotropic velocity 
field, P will be P(ρ) and an expression known as an equation of state will exist. It is 
this additional equation that will complete the closure of the hydrodynamic flow 
equations and will allow for solutions. It is also worth remembering that if the mean 
flow velocity  is very large compared to the velocities produced by collisions, then 
the above assumption is invalid, no scalar equation of state will exist, and the full-
blown equations of hydrodynamic flow given by equation (1.2.26) must be solved. In 
addition, a good deal of additional information about the system must be known so 
that a tensor equation of state can be found and the creation term can be evaluated. 

ur

 
 It is worth making one further assumption regarding the flow equations. 
Consider the case where the flow is zero and the material is quiescent. The entire 
left-hand side of equation (1.2.27) is now zero, and the assumption of an isotropic 
velocity field produced by random collisions holds exactly. The Euler-Lagrange 
equations of hydrodynamic flow now take the particularly simple form   

                                         (1.2.28) 
which is known as the equation of hydrostatic equilibrium. This equation is usually 
cited as an expression of the conservation of linear momentum.Thus the zeroth 
moment of the Boltzmann transport equation results in the conservation of matter, 
whereas the first velocity moment yields equations which represent the conservation 
of linear momentum. You should not be surprised that the second velocity moment 
will produce an expression for the conservation of energy. So far we have considered 
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moment analysis involving velocity space alone. Later we shall see how moments 
taken over some dimensions of physical space can produce the diffusion 
approximation so important to the transfer of photons. As you might expect, 
moments taken over all physical space should yield "conservation laws" which apply 
to an entire system. There is one such example worth considering. 
 
 
 Boltzmann Transport Equation and the Virial Theorem  The Virial 
theorem of classical mechanics has a long and venerable history which begins with 
the early work of Joseph Lagrange and Karl Jacobi. However, the theorem takes its 
name from work of Rudolf Clausius in the early phases of what we now call 
thermodynamics. Its most general expression and its relation to both subjects can be 
nicely seen by obtaining the virial theorem from the Boltzmann transport equation. 
Let us start with the Euler-Lagrange equations of hydrodynamic flow, which already 
represent the first velocity moment of the transport equation. These are vector 
equations, and so we may obtain a scalar result by taking the scalar product of a 
position vector with the flow equations and integrating over all space which contains 
the system. This effectively produces a second moment, albeit with mixed moments, 
of the transport equation. In the 1960s, S. Chandrasekhar and collaborators 
developed an entire series of Virial-like equations by taking the vector outer (or 
tensor) product of a position vector with the Euler-Lagrange flow equations. This 
operation produced a series of tensor equations which they employed for the study of 
stellar structure. Expressions which Chandrasekhar termed "higher-order virial 
equations" were obtained by taking additional moments in the spatial coordinate r. 
However, the use of higher moments makes the relationship to the Virial theorem 
somewhat obscure. 
  
 The origin of the position vector is important only in the interpretation of 
some of the terms which will arise in the expression. Remembering that the left-hand 
side of equation (1.2.27) is the total time derivative of the flow velocity u , we see 
that this first spatial moment equation becomes  

r

 

            (1.2.29) 
With some generality 

                                                                      (1.2.30) r
Since  is just the time rate of change of position, we can rewrite ur )dt/ud(r r

• so that 
the first integral of equation (1.2.29) becomes 
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                                            (1.2.31)  
Here T is just the total kinetic energy due to the mass motions, as described by , of 
the system, and the integral can be interpreted as the moment of inertia about the 
center, or origin, of the coordinate frame which defines 

ur

rr . The third integral in 
equation (1.2.29) can be rewritten by using the product law of differentiation and the 
divergence theorem: 

     (1.2.32) 
rIt is also worth noting that 3r =•∇ . We usually take the volume enclosing the 

object to be sufficiently large that Ps = 0. If we now make use of the ideal gas law 
[which we derive in the next section along with the fact that the internal kinetic 
energy density of an ideal gas is )m/(kT h2

3 µρ=ε ], we can replace the pressure P in 
the last integral of equation (1.2.32) with (2/3)ε . The integral then yields twice the 
total internal kinetic energy of the system, and our moment equation becomes 

                  (1.2.33) 
 Here I is the moment of inertia about the origin of the coordinate system, and 
U is the total internal kinetic energy resulting from the random motion of the 
molecules of the gas. The last term on the right is known as the Virial of Clausius 
whence the theorem takes its name. The units of that term are force times distance, so 
it is also an energy-like term and can be expressed in terms of the total potential 
energy of the system. Indeed, if the force law governing the particles of the system 
behaves as 1/r2, the Virial of Clausius is just the total potential energy5. This leads to 
an expression sometimes called Lagrange's identity which was first developed in full 
generality by Karl Jacobi and is also called the non-averaged form of the Virial 
theorem 

    (1.2.34) 
If we consider a system in equilibrium or at least a long-term steady state, so that the 
time average of equation (1.2.34) removes the accelerative changes of the moment of 
inertia (i.e., <d2I/dt2> = 0), then we get the more familiar form of the Virial theorem, 
namely, 

                                                         (1.2.35) 
  
 It is worth mentioning that the use of the Virial theorem in astronomy often 
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replaces the time averages with ensemble averages over all available phase space. 
The theorem which permits this is known as the Ergodic theorem, and all of 
thermodynamics rests on it. Although such a replacement is legitimate for large 
systems consisting of many particles, such as a star, considerable care must be 
exercised in applying it to stellar or extra-galactic systems having only a few 
members. However, the Virial theorem itself has basically the form and origin of a 
conservation law, and when the conditions of the theorem's derivation hold, it must 
apply. 
 
1.3    Equation of State for an Ideal Gas and Degenerate Matter 
 
  Formulation of the Boltzmann transport equation also provides an 
ideal setting for the formulation of the equation of state for a gas under wide-ranging 
conditions. The statistical distribution functions developed in Section 1.1 give us the 
distribution functions for particles which depend largely on how filled phase space 
happens to be. Those functions relate the particle energy and the kinetic temperature 
to the distribution of particles in phase space. This is exactly what is meant by f )v(r . 
Thus we can calculate the expected relationship between the pressure as given by the 
pressure tensor and the state variables of the distribution function. The result is 
known as the equation of state. 
 
 As given in equation (1.2.24), the pressure tensor is p( ut uurr− ). If )v(f r  is 
symmetric in , then u  must be zero (or there must exist an inertial coordinate 
system in which r  is zero), and the divergence of the pressure tensor can be replaced 
by the gradient of a scalar, which we call the gas pressure, and will be given by     

vr r

u

                                                                                    (1.3.1) 
From Maxwell-Boltzmann statistics, the distribution function of particles, in terms of 
their velocity, was given by equation (1.1.16). If we regard the number of cells of 
phase space to be very large, we can replace Ni by dN and consider equation (1.1.16) 
to give the distribution function f )v(r , so that     

                                                                          (1.3.2) 
Now, in general, 
 

                                              (1.3.3) 
 



 

 26

1 Stellar Interiors 
 
Substitution of equation (1.3.2) into equation (1.3.1) therefore yields 
    

                                                                                                (1.3.4) 
  This is known as the ideal-gas law and it is the appropriate equation 
of state for a gas obeying Maxwell-Boltzmann statistics. That is, we may confidently 
expect that this simple formula will provide the correct relation among P, T, and ρ as 
long as the cells of phase space do not become overly filled and quantum effects 
become important. If the density is increased without a corresponding increase in 
particle energy, a point will come when the available cells of phase space begin to fill 
up in accordance with the Pauli Exclusion Principle. As the most "popular" cells in 
phase space become filled, the particles will have to spill over into adjacent cells, 
producing a distortion in the distribution function (see Figure 1.5). When this 
happens, the gas is said to become partially degenerate. Figure 1.5 shows this effect 
and indicates a way to quantify the effect. We define a momentum p0 as that 
momentum above which there are just enough particles to fill the remaining phase 
space cells below p0. Thus     

                                                                   (1.3.5) 
 
 If we make the approximation that all the spaces in phase space are filled 
(i.e., a negligible number of particles exist with momentum above p0), then the 
momentum distribution of the particles can be represented by a section of a sphere in 
momentum  
space so that    

                                                                                    (1.3.6) 
 
The factor of 2 arises because the electron can have two spin states in a cell of size 
h3. The number density of particles can then be given in terms of p0 as 
   

                                                                              (1.3.7) 
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Figure 1.5 Shows a momentum cross section of phase space with 
different particle densities. As the volume saturates, the 
distribution function departs further and further from 
Maxwellian. The Fermi momentum p0, represents that 
momentum such that the particles having greater momentum 
would just fill the momentum states below it. 

 
 We have already developed a relation for the scalar pressure in terms of the 
velocity distribution under the assumption of an isotropic velocity field in equation 
(1.3.1), and we need only replace the velocity distribution f( vr ) with a distribution 
function of momentum. However, we must remember that the integral in equation 
(1.3.1) is actually three integrals over each velocity coordinate which will all have 
the same value for an isotropic velocity field. The three integrals corresponding to 
the three components of velocity in equation (1.3.1) are equal for spherical 
momentum space. Therefore one-third of the scalar form of equation (1.3.1) will 
represent the total contribution of the momentum to the pressure. Thus the pressure 
can be expressed in terms of the maximum momentum p0, often known as the Fermi 
momentum, as     
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Using equation (1.3.7), we can eliminate p0 and obtain a relationship between the 
pressure and the density. This, then, is the equation of state for totally degenerate  
 
matter, and since the electrons tend to become degenerate before any other particles, 
it is common to write the equation of state for electron degeneracy alone. 
    

                      (1.3.9) 
Here me and mh are the mass of the electron and hydrogen atom, respectively, while 
me is the mean molecular weight of the free electrons. 
 
 If we consider a gas under extreme pressure, not only will the cells of phase 
space be filled, but also the maximum momentum will become very large. Although 
the mass m and momentum p both approach infinity as the particle energy increases, 
their ratio p/m does not. It remains finite and approaches the speed of light c. Since 
these particles also make the largest contribution to the pressure, we can estimate the 
effect of having a relativistically degenerate gas by replacing p/m by c in equation 
(1.3.8), and we get    

                                             (1.3.10) 
which leads to an equation of state that depends on p4/3 instead of p5/3, as in the case 
of nonrelativistic degeneracy. Eliminating p0, we obtain for the electron degeneracy 
  

 P = (hc/8mh)(3/πmh)1/3(p/me)4/3 = 1.231x1015(p/me)4/3   (cgs)   (1.3.11) 
 
  The equations of state for degenerate matter that we have derived represent 
limiting conditions and are never exactly realized. In real situations we must consider 
the transition between the ideal-gas law and total degeneracy as well as the transition 
between nonrelativistic and completely relativistic degeneracy. One way to identify 
the range of state variables for which we can expect a transition zone is to equate the 
various equations of state and to solve for the range of state variables involved. 
Equating the ideal-gas law [equation (1.3.4)] with the equation for a totally 
degenerate gas [equation (1.3.9)], we can determine the range of density ρt and 
temperature Tt which lie in the transition zone between the two equations of state     

                                                         (1.3.12) 
 For a metal at 100 K, ρt/me = 6×10-5 gm/cm3, which implies that the electrons 
in such a conductor follow the degenerate equation of state and that virtually all the 
cells in phase space are full. This accounts for the high conductivity of metals, since 
the saturation of phase space cells implies that free electrons cannot scatter off the 
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other particles in the metal (for in doing so they would have to move to a new cell in 
phase space, which is more than likely filled). Thus, they travel relatively unhindered 
through the conductor. In general, a totally degenerate gas proves to be an excellent 
conductor.  
 
 For temperatures on the order of 107 K which prevail in the center of the sun, 
the transition densities occur at about 8×102 g/cm3 which is significantly higher than 
we find in the sun. Thus, we may be assured that the ideal-gas law will be 
appropriate throughout the interior of the sun and most stars. However, white dwarfs 
do exceed the transition density for the temperatures we may expect in these stars. 
Therefore, we can expect a transition from the ideal-gas law which will prevail in the 
surface regions to total degeneracy in the interior. In this transition region the 
equation of state becomes more complex. A complete discussion of this region can 
be found in Cox and Giuli6 and Chandrasekhar7. The basic philosophy is to write the 
equation  of state in parametric form in terms of a degeneracy parameter  y,  where  
the equation of state becomes the ideal-gas law when  y << 0 and the equation  of  
state approaches the totally degenerate equation of state if  y >> 0 . This parametric 
form can be written as             

                                                         (1.3.13) 
     
  In the transition zone between nonrelativistic and relativistic degeneracy, 
S. Chandrasekhar7 also gives a parametric equation of state in terms of the 
"maximum" momentum p0 of the Fermi sea:   
  

                                                  (1.3.14) 
 As x approaches zero, the nonrelativistic equation of state is obtained 
whereas as x approaches infinity, the fully relativistic limit is obtained. In the rare 
case where the gas occupies both transition regions at the same time, the equation of 
state becomes quite complicated. Refer to Cox and Giuli for a detailed description of 
this situation8. 
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 Before leaving this discussion of the equation of state and degenerate matter, 
we want to explore some consequences of the most notable aspect of the degenerate 
equation of state. Nowhere in either the nonrelativistic or the relativistic degenerate 
equation of state does the temperature appear. This complete lack of temperature 
dependence implies a unique relationship between the pressure and the density.  
 
 Hydrostatic equilibrium [equation (1.2.28)] implies a relation among the 
pressure, mass, and radius. Since the mass, density, and radius are related by 
definition, these three relationships should allow us to find a unique relation between 
the mass of the configuration and its radius. Although a detailed investigation of the 
relation requires the solution of a differential equation coupled with some extremely 
nonlinear equations, we can get a sense of the mass-radius relation by considering 
the form of the equations that constrain the solution. 
  
 For spherical stars, hydrostatic equilibrium as expressed by equation (1.2.28) 
implies that  

                                                                                (1.3.15) 
Since we can also expect the pressure gradient to be proportional to P/R, the internal 
pressure in a star should vary as    

                                                                                                 (1.3.16) 
For a totally degenerate gas, the equation of state requires that      

                                                                                     (1.3.17) 
Thus, we eliminate the pressure from these two expressions to get     

                                                                 (1.3.18) 
 We arrive at a curious result: As the mass of the configuration increases, the 
radius decreases. This situation, then, must prevail for white dwarfs. The more 
massive the white dwarf, the smaller its radius. In a situation where mass is added to 
a white dwarf, thereby causing its radius to decrease, the internal pressure must 
increase, which leads to an increase in the Fermi momentum p0. Sooner or later the 
equation of state must change over to the fully relativistic equation of state. Here    

                                                                                    (1.3.19) 
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If we again eliminate the pressure by using equation (1.3.16), then the radius also 
disappears and 
                                                    M                                        (1.3.20) .constant   ~ 
  
 Thus, for a fully relativistic degenerate gas, there is a unique mass for which 
the configuration is stable. Should mass be added beyond this point, the star would 
be forced into a state of unrestrained gravitational collapse. Much later we shall see 
that a further change in the equation of state, which occurs when the density 
approaches that of nuclear matter, can halt the collapse, allowing the formation of a 
neutron star. But for "normal" matter a limit is set by quantum mechanics, and this 
prevents the formation of white dwarfs with masses greater than about 1.4 M⊙ . This 
is the limit found by S. Chandrasekhar in the late 1930s and for which he received 
the Nobel Prize in 1983. The configuration described by the fully relativistically 
degenerate equation of state is a strange one indeed, and we shall explore it in some 
detail later. For now, let us turn to the most basic assumptions that must be made for 
the study of stellar structure and to what they imply about the nature of stars.   
 
Problems 
 
1.  Consider a standard deck of 52 playing cards dealt into four hands of 13 

cards each. If a given suit distribution within a hand represents a macrostate 
while a specific set of cards within a suit represents a microstate, find  

  a  the number of possible macrostates for each hand, 
b the number of microstates allowed for each macrostate, and  
c  the most probable macrostate. 

 
2 Consider a space with three cells of size 2h3, and nine particles. Find the total 

number of macrostates, the total number of microstates, and the most 
probable macrostate, assuming the particles are 

   a  "Maxwellons",  
   b  fermions, and  
   c  bosons. 
 
3. Given that 

  
 and that w = (px

2 + p2
y + p2

z)/m, find an expression for B in terms of N for the 
cases where φ = 0, ±1. 

 
4. Derive the equation of state for a Fermi gas from first principles. 
 
5. Given that f(x) is an analytic function in the interval 0 ≤ x ≤ 4 , show that f(x) 

can be represented in terms of the moments of the function Mi [f(x)], where  
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6. If the pressure tensor P has the form specified by equation (1.2.25), show that 

it can be rewritten as it appears in equation (1.2.24) (i.e., as the tensor 
operated on by the divergence operator in the third term on the left-hand 
side). 

 
7. Show that the Virial theorem holds in the form given by equation (1.2.35) 

even if the forces of interaction include velocity dependent terms (i.e., such 
as Lorentz forces or viscous drag forces). 

 
8. Show that the second velocity moment of the Boltzmann transport equation 

leads to an equation describing the conservation of energy. 
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statistical mechanics, any good book on that subject should enhance the readers 
understanding. Some examples are: 
 
 Reif, F.,  Statistical Physics, McGraw-Hill, New York, 1967. 
 

Akhiezer, A.I., and Peletminskii, S.V.: Methods of Statistical Physics, 
Pergamon, New York, 1981. 

 
 Anderws, F.C.,Equilibrium Statistical Mechanics, Wiley, New York, 1975. 
 

Mayer, J.E., and Mayer, G.M.  Statistical Mechanics, Wiley, New York, 
1977. 


