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If we take the classical picture of the atom as the definitive view of the formation of 
spectral lines, we would conclude that these lines should be delta functions of 
frequency and appear as infinitely sharp black lines on the stellar spectra. However, 
many processes tend to broaden these lines so that the lines develop a characteristic 
shape or profile. Some of these effects originate in the quantum mechanical 
description of the atom itself. Others result from perturbations introduced by the 
neighboring particles in the gas. Still others are generated by the motions of the 
atoms giving rise to the line. These motions consist of the random thermal motion of 
the atoms themselves which are superimposed on whatever large scale motions may 
be present. The macroscopic motions may be highly ordered, as in the case of stellar 
rotation, or show a high degree of randomness such as is characteristic of turbulent 
flow. 
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 In practice, all these effects are present and give the line its characteristic 
shape. The correct representation of these effects allows for the calculation of the 
observed line profile and in the process reveals a great deal about the conditions in 
the star that give rise to the spectrum. Of course the photons that give rise to the 
absorption lines in the stellar spectrum have their origins at different locations in the 
atmosphere. So the conditions giving rise to a spectral line are really an average of a 
range of conditions. Thus, when we talk of the excitation temperature or the kinetic 
temperature appropriate for a specific spectral line, it must be clear that we are 
referring to some sort of average temperature appropriate for that portion of the 
atmosphere in which most of the line photons originate. For strong lines with optical 
depths much greater than the optical depth of the adjacent continuum, the physical 
depth of the line-forming region is quite small, and the approximation of the physical 
conditions by their average value is a good one. Unfortunately, for very strong lines, 
the optical depths can range to such large values that the line-forming region is 
located in the chromosphere, where most of the assumptions that we have made 
concerning the structure of the stellar atmosphere break down. A discussion of such 
lines will have to wait until we are ready to relax the condition of LTE. 
 
 In describing the shape or profile of a spectral line, we introduce the notion 
of the atomic line absorption coefficient. This is a probability density function that 
describes the probability that a given atom in a particular state of ionization and 
excitation will absorb a photon of frequency ν in the interval between ν and ν + dν. 
We then assume that an ensemble of atoms will follow the probability distribution 
function of the single atom and produce the line. In order to make the connection 
between the behavior of a single atom and that of a collection of atoms, we shall 
make use of the Einstein coefficients that were introduced in Section 11.3. 
 
14.1   Relation between the Einstein, Mass Absorption, and Atomic 

Absorption Coefficients 
 
Since the Einstein coefficient Bik is basically the probability that an atom will make a 
transition from the ith state to the kth state in a given time interval, the relationship to 
the mass absorption coefficient can be found by relating all upward transitions to the 
total absorption of photons that must take place. From the definition of the Einstein 
coefficient of absorption, the total number of transitions that take place per unit time 
is 

Ni6k = niBikIνdt 
    (14.1.1) 
where ni is the number density of atoms in the ith state. Since the number of photons 
available for absorption at a particular frequency is (Iν/hν)dν, the total number of 
upward transitions is also 
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                          (14.1.2) 
If we assume that the radiation field seen by the atom is relatively independent of 
frequency throughout the spectral line, then the integral of the mass absorption 
coefficient over the line is 

                             (14.1.3) 
where ν0 is the frequency of the center of the line. 
 
 For the remainder of this chapter, we will be concerned with the 
determination of the frequency dependence of the line absorption coefficient. Thus, 
we will be calculating the absorption coefficient of a single atom at various 
frequencies. We will call this absorption coefficient the atomic line absorption 
coefficient, which is related to the mass absorption coefficient by 

                                 (14.1.4) 
Note that we will occasionally use the circular frequency ω instead of the frequency 
ν, where ω = 2πν. 
 
14.2   Natural or Radiation Broadening 
 
Of all the physical processes that can contribute to the frequency dependence of the 
atomic line absorption coefficient, some are intrinsic to the atom itself. Since the 
atom must emit or absorb a photon in a finite time, that photon cannot be represented 
by an infinite sine wave. If the photon wave train is of finite length, it must be 
represented by waves of frequencies other than the fundamental frequency of the line 
center ν0. This means that any photon can be viewed in terms of a "packet" of 
frequencies ranging around the fundamental frequency. So the photon will consist of 
energy occupying a range of wavelengths about the line center. The extent of this 
range will depend on the length of the photon wave train. The longer the wave-train, 
the narrower will be the range of frequencies or wavelengths required to represent it.  
 
 Since the length of the wave train will be proportional to the time required to 
emit or absorb it, the characteristic width of the range will be proportional to the 
transition probability (i.e., the inverse of the transition time) of the atomic transition. 
This will be a property of the atom alone and is known as the natural width of the 
transition. It is always present and cannot be removed. Its existence depends only on 
the finite length of the wave train and so is not just the result of the quantum nature 
of the physical world. Indeed, there are two effects to estimate: the classical effect 
relying on the finite nature of the wave train, and the quantum mechanical effect that 
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can be obtained for a specific atom's propensity to emit photons. The former will be 
independent of the type of atom, while the latter will yield a larger broadening that 
depends specifically on the type of atom and its specific state. 
 
 a   Classical Radiation Damping 
 
  The classical approach to the problem of absorption relies on a 
picture of the atom in which the electron is seen to oscillate in response to the electric 
field of the passing photon. There is a strong analogy here between the behavior of 
the electrons in the atom and the free electrons in an antenna. The energy of the 
passing wave is converted to oscillatory motion of the electron(s), which in the 
antenna produce a current that is subsequently amplified to signal the presence of the 
photon. It then makes sense to use classical electromagnetic theory to estimate this 
effect for the single optical electron of an atom. The oscillation of this electron can 
then be viewed as a classical oscillating dipole. 
 
 Since an oscillating electron represents a continuously accelerating charge, 
the electron will radiate or absorb energy. In the classical picture, the processes of 
emission and absorption are interchangeable. The emission simply requires the 
presence of a driving force, which is the ultimate source of the energy that is emitted, 
while the energy source for the absorption processes is the passing photon itself. If 
we let W represent the energy gained or lost over one cycle of the oscillating dipole, 
then any good book on classical electromagnetism (i.e., W. Panofsky and M. 
Phillips1 or J. Slater and N. Frank2) will show that 

                               (14.2.1) 
 where d2x/dt2 is the acceleration of the oscillating charge. Now if we assume that the 
oscillator is freely oscillating, then the instantaneous acceleration is simply 

                                        (14.2.2) 
This is a good assumption as long as the energy is to be absorbed on a time scale that 
is long compared to the period of oscillation. Since the driving frequency of the 
oscillator is that of the line center, this is equivalent to saying that the spread or range 
of absorbed frequencies is small compared to the frequency of the line center. 
 
 Equation (14.2.2) can be used to replace the mean square acceleration of 
equation (14.2.1) to get 

                                  (14.2.3) 

 The mean position of the oscillator can, in turn, be replaced with the mean total 
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energy of the oscillator from               

                           (14.2.4) 
so that the differential equation for the absorption or emission of radiation from a 
classical oscillating dipole is 

                         (14.2.5) 
The quantity γ is known as the classical damping constant and is 

                                 (14.2.6) 
The solution of equation (14.2.5) shows that the absorption of the energy of the 
passing photon will be 

                                       (14.2.7) 
where I0 is the presumably sinusoidally varying energy field of the passing photon. 
The result is that energy of the absorbed or emitted photon resembles a damped sine 
wave (see Figure 14.1). 
 
 But, we are interested in the behavior of the absorption with wavelength or 
frequency, for that is what yields the line profile. Since we are interested in the 
behavior of an uncorrelated collection of atoms, their combined effect will be 
proportional to the combined effect of the squares of the electric fields of their 
emitted photons. Thus, we must calculate the Fourier transform of the time-
dependent behavior of the electric field of the photon so that 

                            (14.2.8) 
 
 If we assume that the photon encounters the atom at t = 0 so that E(t) = 0 for  
 t < 0, and that it has a sinusoidal behavior for t ≥ 0, then the 
frequency dependence of the photon's electric field will be 

tie 0
0EE(t) ω−=

              (14.2.9) 
Thus the power spectrum of the energy absorbed or emitted by this classical 
oscillator will be 
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         (14.2.10) 

 
Figure 14.1 is a schematic representation of the effect of radiation 
damping on the wave train of an emitted (absorbed, if t is replaced     
with -t) photon. The pure sine wave is assumed to represent the photon 
without interaction, while the exponential dotted line depicts the 
effects of radiation damping by the classical oscillator. The solid curve 
is the combined result in the time domain.  

  
It is customary to normalize this power spectrum so that the integral over all 
frequencies is unity so that 

                       (14.2.11) 
This normalized power spectrum occurs frequently and is known as a damping 
profile or a Lorentz profile. Since the atomic absorption coefficient will be 
proportional to the energy absorbed, 

                            (14.2.12) 
Here the constant of proportionality can be derived from dispersion theory3. A plot of 
Sω shows a hump-shaped curve with very large "wings" characteristic of a damping 
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profile (see Figure 14.2). At some point in the profile, the absorption coefficient 
drops to one-half of its peak value. If we denote the full width at this half-power 
point by ∆λc, then 

           (14.2.13) 
This is known as the classical damping width of a spectral line and is independent of 
the atom or line. It is also very much smaller than the narrowest lines seen in the 
laboratory, and to see why, we must turn to a quantum mechanical representation of 
radiation damping. 

 
 

Figure 14.2 shows the variation of the classical damping coefficient 
with wavelength. The damping coefficient drops to half of its peak 
value for wavelength shifts equal to ∆λc/2 on either side of the central 
wavelength. The overall shape is known as the Lorentz profile. 

 
 b  Quantum Mechanical Description of Radiation Damping 
 
 The quantum mechanical view of the emission or absorption of a photon is 
rather different from the classical view since it is intimately connected with the 
nature of the atom in question. The basic approach involves the Heisenberg 
uncertainty principle as the basis of the broadening. If we consider an atom to be in a 
certain state, then the length of time that it can remain in that state is related to the 
uncertainty of the energy of that state by 

                                  (14.2.14) 
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If there are a large number of states to which the atom can make a transition, then the 
probability of it doing so is great, ∆t is small, and the uncertainty of the energy level 
is large. A large uncertainty in the energy of a specific state means that a wide range 
of frequencies can be involved in the transition into or out of that state. Thus any line 
resulting from such a transition will be unusually broad. Thus any strong line 
resulting from frequent transitions will also be quite broad. 
 
 This view of absorption and emission was quantified by Victor Weisskopf 
and Eugene Wigner4,5in 1930. They noted that the probability of finding an atom 
with a wave function Ψj in an excited state j after a transition from a state i is 

                                  (14.2.15) 
where Γ is the Einstein coefficient of spontaneous emission Aji. The exponential 
behavior of Pj(t) ensures that the power spectrum of emission will have the same 
form as the classical result, namely, 

                       (14.2.16) 
If the transition takes place between two excited levels, which can be labeled u and l, 
the broadening of which can be characterized by transitions from those levels, then 
the value of gamma for each level will have the form 

                       (14.2.17) 
The power spectrum of the transition between them will then have the form of 
equation (14.2.16), but with the value of gamma determined by the width of the two 
levels so that 

                                 (14.2.18) 
 
 c   Ladenburg f-value 
 
  Since the power spectrum from the quantum mechanical view of 
absorption has the same form as that of the classical oscillator, it is common to write 
the form of the atomic absorption coefficient as similar to equation (14.2.12) so that 

                   (14.2.19) 
The quantity fik is then the equivalent number of classical oscillators that the 
transition from i → k can be viewed as representing. If you like, it is the number that 
brings the quantum mechanical calculation into line with the classical representation 
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of radiation damping. If the energy levels are broad, then the transition is much more 
likely to occur than one would expect from classical theory, the absorption 
coefficient will be correspondingly larger, and fik > 1. The quantity fik is known as the 
Ladenburg f value or the oscillator strength. However, the line profile will continue 
to have the characteristic Lorentzian shape that we found for the classical oscillator. 
 
 Since the f value characterizes the entire transition, we expect it to be related 
to other parameters that specify the transition. Thus, the f value and the Einstein 
coefficient of absorption are not independent quantities. We may quantify this 
relation by integrating equation (14.2.19) over all frequencies and by using equation 
(14.1.4), substituting into equation (14.1.3) to get 

   (14.2.20) 
where a = Γik/2, and ν0 is the frequency of the line center. If we make the assumption 
that the line frequency width is small compared to the line frequency, then          
Γik/ω0 << 1 and equation (14.2.20) becomes 

                                  (14.2.21) 
 Thus the classical atom can be viewed as radiating or absorbing a damped 
sine wave whose Fourier transform contains many frequencies in the neighborhood 
of the line center. These frequencies are arranged in a symmetrical pattern known as 
a Lorentz or damping profile characterized by a specific width. The quantum 
mechanical view changes very little of this except that the transition can be viewed 
as being made up of a number of classical oscillators determined by the Einstein 
coefficient of the transition. In addition, the classical damping constant is replaced by 
a damping constant that depends on all possible transitions in and out of the levels 
involved in the transition of interest. The term that describes this form of broadening 
is radiation damping and it is derived from the damped form of the absorbed or 
emitted photon wave train, as is evident from the classical description.  
 
 The broadening of spectral lines by this process is independent of the 
environment of the atom and is a result primarily of the probabilistic behavior of the 
atom itself. In cases where external forms of broadening are small or absent, 
radiation damping may be the dominant form of broadening that effectively 
determines the shape of the spectral line. When this is the case, little about the nature 
of the environment can be learned from the line shape. However, for normal stellar 
atmospheres and most lines, perturbations caused by the surrounding medium cause 
changes in the energy levels that far outweigh the natural broadening of the 
uncertainty principle. We now consider these forms. 
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14.3 Doppler Broadening of Spectral Lines 
 
The atoms that make up the gas of the stellar atmosphere are constantly in motion, 
and this motion shifts the wavelengths, seen by an observer, at which the atoms can 
absorb radiation. This motion may be only the thermal motion of the gas, or it may 
include the larger-scale motions of turbulence or rotation. Whatever the combination, 
the shifting of the rest wavelengths by varying amounts for different populations of 
atoms will usually result in the observed line's being broadened by an amount 
significantly greater than the natural width determined by atomic properties.  
  
 The shifting of the rest wavelength caused by the motion of the atoms not 
only produces a change as seen by the observer, but also may expose the atom to a 
somewhat different radiation field. This will be true if the motion is locally random 
so that the motion of each atom is uncorrelated with that of its neighbors. However, 
should the motions be large-scale, then entire collections of atoms will have their rest 
wavelengths shifted by the same amount with respect to the observer and the star. If 
these collections of atoms constitute an optically thick ensemble, then the radiation 
field of the ensemble will be shifted along with the rest wavelength. To atoms within 
such a "cloud" there will be no effect of the motion on the atoms themselves. It will 
be as if a "mini-atmosphere" was moving, and no additional photons will be 
absorbed as a result of the motion. Such motions will not affect the equivalent widths 
of lines but may change the profiles considerably.  
 
 Contrast this with the situation resulting from an atom whose motion is 
uncorrelated with that of its neighbors. Imagine a line with an arbitrarily sharp 
atomic absorption coefficient [that is, Sν = δ(ν-ν0)]. If there were no motion in the 
atmosphere, the lowest-lying atoms would absorb all the photons at frequency ν0, 
leaving none to be absorbed by the overlying atoms. Such a line is said to be 
saturated because the addition of absorbing material will make no change in the line 
profile or equivalent width. But, allow some motion, and the rest frequency of these 
atoms is changed slightly from ν0. Now these atoms will be capable of absorbing 
photons at the neighboring frequencies, and the line will appear wider and stronger. 
Its equivalent width will be increased simply as a result of the Doppler shifts 
experienced by some atoms. Thus, if the motion consists of collections of atoms that 
are optically thin, we can expect changes in the line strengths as well as in the 
profiles. However, if those collections of atoms are large enough to be optically 
thick, then no change in the equivalent width will occur in spite of marked changes 
in the line profile. We refer to the motions of the first case as microscopic motions so 
as to contrast them with the second case of macroscopic motion. 
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 a   Microscopic Doppler Broadening 
 
  Again, it is useful to make a further subdivision of the classes of 
microscopic motions based on the nature of those motions. In the case of thermal 
motions, we may make plausible assumptions regarding the velocity field of the 
atoms. 
 
 Thermal Doppler Broadening   The assumption of LTE from Section 
9.1b stated that the particles that make up the gas obeyed Maxwell-Boltzmann 
statistics appropriate for the local values of temperature and density. For establishing 
the Saha-Boltzmann ionization and excitation formulas, it was really only necessary 
that the electrons dominating the collision spectrum exhibit a maxwellian energy 
spectrum. However, we will now insist that the ions also obey Maxwell-Boltzmann 
statistics so that we may specify the velocity field for the atoms. With this 
assumption, we may write 

                               (14.3.1) 
where dN/N is just the fraction of particles having a speed lying between v and v + 
dv and so it is a probability density function of the particle energy distribution. It is 
properly normalized since the integrals of both sides of equation (14.3.1) are unity. 
The second moment of this energy distribution gives 
 

                 (14.3.2) 
which we may relate to the kinetic energy of the gas. 
  
 Now we wish to pick the speed used in equations (14.3.1), and (14.3.2) to be 
the radial or line of sight velocity. Since there is no preferred frame of reference for 
the random velocities of thermal motion, this choice is as good as any other. 
However, the mean square velocity <v2> calculated in equation (14.3.2) is then only 
averaged over line-of-sight or radial motions and thus represents only 1 degree of 
freedom for the particles of the gas. So the energy associated with that motion is 
equal to ½kT for a monatomic gas, and 

                                         14.3.3) 
 
 With the aid of the first-order (classical) Doppler shift, we define the Doppler 
width of a line in terms of v0 as 
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                                (14.3.4) 
Using equation (14.3.4), we may rewrite the particle distribution function for 
velocity as one for the fraction of atoms capable of absorbing at a frequency shift ∆ν 
(or wavelength shift ∆λ). 

(14.3.5) 
Since the atomic line absorption coefficient is basically the probability of an atom's 
absorbing a photon at a given frequency, that probability should be proportional to 
the number of atoms capable of absorbing at that frequency. Thus, 

                         (14.3.6) 
where A is simply a constant of proportionality. This constant can be related to the 
Einstein coefficient by equations (14.1.3), and (14.1.4), with the result that 

  (14.3.7) 
         
 To get the result on the far right-hand side, we used the relationship between 
the f value for a particular transition and the Einstein coefficient given by equation 
(14.2.21). This is the expression for the atomic line absorption coefficient for thermal 
Doppler broadening. It differs significantly from the Lorentz profile of radiation 
damping by exhibiting much stronger frequency dependence. A spectral line where 
both broadening mechanisms are present will possess a line core that is dominated by 
Doppler broadening while the far wings of the line will be dominated by the damping 
profile as the gaussian profile of the Doppler core rapidly goes to zero. 
 
 Microturbulent Broadening In addition to the thermal velocity field, the 
atoms in the atmospheres of many stars experience motion due to turbulence. 
Unfortunately, the theory of turbulent flow is insufficiently developed to enable us to 
make specific predictions concerning the velocity distribution function of the 
turbulent elements. So, for simplicity, we assume that they also exhibit a maxwellian 
velocity distribution, but one having a characteristic velocity different from the 
thermal velocity. Thus, the form of the probability density distribution function for 
turbulent elements is the same as equation (14.3.1) except that the velocity is the 
radial velocity of the turbulent cell: 

                          (14.3.8) 
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broadened except for a minor change in the interpretation of the Doppler half-width. 
However, we are interested in the combined effects of thermal and turbulent 
broadening, and so we  consider how this combination may be carried out. 
 
 Since equation (14.3.1) represents the fraction of particles with a thermal 
velocity within a particular range, we may write the probability that a given atom 
will have a thermal velocity lying between v and v + dv as 

                           (14.3.9) 
The probability that this same atom will reside in a particular turbulent element 
having a turbulent velocity lying between υ and υ + dυ can be obtained, in a similar 
manner, from equation (14.3.8) and is 

                        (14.3.10) 
However, the observer does not regard these velocities as being independent since 
she or he is interested only in those combinations of velocities that add to produce a 
particular radial velocity v which yields a Doppler-shifted line. So we must regard 
the thermal and turbulent velocities to be constrained by 

                                    (14.3.11) 
 Now the joint probability that an atom will have a velocity v lying between v 
and v + dv resulting from specific thermal and turbulent velocities v and υ, 
respectively, is given by the product of equations (14.3.9) and (14.3.10). But we are 
not interested in just the probability that a thermal velocity v and a turbulent velocity 
υ will yield an observed velocity v; rather we are interested in all combinations of v 
and υ that will yield v. Thus we must sum the product probability over all 
combinations of v and υ subject to the constraint given by equation (14.3.11). With 
this in mind, we can write the combined probability that a given atom will have 
combined thermal and turbulent velocities that yield a specific observed radial 
velocity as 

        (14.3.12) 
Since the velocities involved in equation (14.3.12) are radial velocities, they may 
take on both positive and negative values. Thus the range of integration must run 
from -∞ to +∞. After some algebra, equation (14.3.13) yields the fraction of atoms 
with a combined velocity v to be 
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                           (14.3.13) 
where 

                          (14.3.14) 
  
 The similarity of the form of equation (14.3.13) to that of equations 
(14.3.1), and (14.3.8) is no accident. The integral in equation (14.3.12) is known 
as a convolution integral. The combined probability of p(a) and p(b) involves 
taking the product p(a) × p(b). If, in addition, one has a constraint q(c) = q(a,b), 
then he must consider all combinations of a and b that yield c and sum over them. 
That is, one wants the probability of (a1,b1) or (a2,b2) etc. that yields c. 
Combining probabilities of A or B involves summing those probabilities. So, in 
general, if one wishes to find the combined probability of two processes subject to 
an additional constraint, one "convolves" the two probabilities. It is a general 
property of convolution integrals where the probability distributions have the 
same form that the resultant probability will also have the same form with a 
variance that is just the sum of the variances of the two initial probability 
distribution functions. Thus the convolution of any two Gaussian distribution 
functions will itself be a Gaussian distribution function having a variance that is 
just the sum of the two initial variances. This explains the form of equation 
(14.3.14). As a result, we may immediately write the atomic absorption 
coefficient for the combined effects of thermal and turbulent Doppler broadening 
as  

                         (14.3.15) 
where 

                                      (14.3.16) 
and 

                                (14.3.17) 
 
 It is now clear why we assumed the turbulent broadening to have a 
Maxwellian velocity distribution. If this were not the case, the convolution integral 
would be more complicated. If the turbulent velocity distribution function had the 
form 
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                                  (14.3.18) 
then the convolution integral with thermal broadening would become 
 

               (14.3.19) 
If the function Φ(x) is sufficiently simple, the integral may be expressed in terms of 
analytic functions. If not, then the integral must be evaluated numerically as part of 
the larger calculation for finding the line profile. 
 
 Combination of Doppler Broadening and Radiation Damping   Any 
spectral line will be subject to the effects of radiation damping or some other intrinsic 
broadening mechanism as well as the broadening introduced by Doppler motions. So 
to get a reasonably complete description of the atomic absorption coefficient, we 
have to convolve the Doppler profile with the classical damping profile given by 
equation (14.2.19). However, since the atomic absorption coefficient is expressed in 
terms of frequency, the constraint on the independent variables of velocity and 
frequency must contain the Doppler effect of that velocity on the observed 
frequency. Thus the frequency ν' at which the atom will absorb in terms of the rest 
frequency ν0 is 

                                   (14.3.20) 
For an atom moving with a line-of-sight velocity v, the atomic absorption for 
radiation damping is 

         (14.3.21) 
This atomic absorption coefficient is essentially the probability that an atom having 
velocity v will absorb a photon at frequency ν. To get the total absorption coefficient, 
we must multiply by the probability that the atom will have the velocity v [equation 
(14.3.13)] and sum all possible velocities that can result in an absorption at ν. Thus, 

 (14.3.22) 
 
 The convolution integral represented by equation (14.3.22) is clearly not a 
simple one. When one is faced with a difficult integral, it is advisable to change 
variables so that the integrand is made up of dimensionless quantities. This fact will 
remove all the physical parameters to the front of the integral, clarifying their role in 
the result, and reduce the integral to a dimensionless weighting factor. This also 

 362



14 ⋅ Shape of Spectral Lines  
 

  

facilitates the numerical evaluation of the integral since the relative values of all the 
parameters of the integrand are clear. With this in mind we introduce the following 
traditional dimensionless variables: 

                        (14.3.23) 
Substituting these into equation (14.3.22), we get 

              (14.3.24) 
It is common to absorb all the physical parameters on the right-hand side of equation 
(14.3.24) into a single constant that has the units of an absorption coefficient so that 

                                (14.3.25) 
 The remaining dimensionless function can be written as  
 

               (14.3.26) 
This is known as the Voigt function, and it allows us to write the atomic absorption 
coefficient in the following simple way: 

                                  (14.3.27) 
For small values of the damping constant (a < 0.2), the Voigt function is near unity at 
the line center (that is, u = 0) and falls off rapidly for increasing values of │u│. For 
values of │u│ near zero the Voigt function is dominated by the exponential that 
corresponds to the Doppler core of the line. However, at larger values of │u│, the 
denominator dominates the value of the integral. This corresponds to the damping 
wings of the line profile. 
 
 Considerable effort has gone into the evaluation of the Voigt function 
because it plays a central role in the calculation of the atomic line absorption 
coefficient. One of the earliest attempts involved expressing the Voigt function as  

                             (14.3.28) 
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finds the alternative function 

                               (14.3.29) 
whose integral over all u is unity. This function is known as the normalized Voigt 
function. Extensive tables of this function were calculated by D.Hummer7 and a 
reasonably efficient computing scheme has been given by G.Finn and 
D.Mugglestone8. However, with the advent of fast computers emphasis has been put 
on finding a fast and accurate computational algorithm for the Voigt function. The 
best to date is that given by J.Humí�ek9. This has been expanded by McKenna10 to 
include functions closely related to the Voigt function. All this effort has made it 
possible to obtain accurate values for the Voigt function with great speed, making the 
inclusion of this function in computer codes little more difficult than including 
trigonometric functions. 
 
 b   Macroscopic Doppler Broadening 
 
  The fact that each atom was subject to all the broadening mechanisms 
described above caused most of the problems in calculating the atomic absorption 
coefficient through the introduction of a convolution integral. This approach 
assumed that each atom could "see" other atoms subject to the different velocity 
sources. However, if the turbulent elements were sufficiently large that they 
themselves were optically thick, then each element would optically behave 
independently of the others. The line profiles of each would be similar, but shifted 
relative to the others by an amount determined by the turbulent velocity of the 
element. Indeed, this would be the case if any motions involving optically thick 
sections of the atmosphere were present. 
  
 The proper approach to this problem involves finding the locally emitted 
specific intensity, convolving it with the velocity distribution function and 
integrating the result over the visible surface of the star to obtain the integrated flux. 
This flux can then be normalized to produce the traditional line profile. However, 
since the macroscopic motions can affect the structure of the atmosphere, the 
problem can become exceedingly difficult and solvable only with the aid of large 
computers. In spite of this, much can be learned about the qualitative behavior of 
these broadening mechanisms from considering some greatly simplified examples. 
We discuss just two, the first involves motions of large sections of the atmosphere in 
a presumably uncorrelated fashion, and the second involves the correlated motion of 
the entire star. 
 
 Broadening by Macroturbulence    It would be a mistake to assume that 
turbulent elements only come in sizes that are either optically thick or thin. However, 
to gain some insight into the degree to which turbulence can affect a line profile, we 
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divide the phenomena into these two cases. We have already discussed the effects 
that small turbulent elements have on the resulting atomic line absorption coefficient 
(i.e., microturbulence), and we have seen that they lead to an increase in value of that 
parameter for all frequencies. Such is not the case for macroturbulence. The motion 
of optically thick elements cannot change the value of the atomic line absorption 
coefficient because the environment of a particular atom concealed within the 
turbulent element is unaffected by the motion of that element. Thus, each element 
behaves as a separate "atmosphere", producing its own line profile, which contributes 
to the stellar profile by an amount proportional to the ratio of the visible area of the 
element to that of the apparent disk of the star. Thus, the combining (or convolution) 
of line profiles occurs not on the atomic level as with microturbulent Doppler 
broadening, but after the radiative transfer has been locally solved to yield a local 
line profile. This requires that we make assumptions that apply globally to the entire 
star in order to relate one turbulent element to another. 
 
 To demonstrate the nature of this effect, we consider a particularly simple 
situation where there is no limb-darkening in or out of the line. In addition, we 
assume that the local line profile is given by a Dirac delta function of frequency and 
that the macroturbulent motion is purely radial with a velocity ∀vm. Under these 
conditions, zones of constant radial velocity will appear as concentric circles on the 
apparent disk (see Figure 14.3). 
 
 Since the intrinsic line profile is a delta function of frequency, the line profile 
originating at a ring of constant radial velocity located at an angle θ measured from 
the center of the disk will be Doppler shifted by an amount 

                             (14.3.30) 
where, as usual, 

          (14.3.31) 
 
The amount of energy removed from the total continuum flux by the local line 
absorption will simply be proportional to the area of the differential annulus located 
at the particular value of µ corresponding to  ∆ν. Thus,  

       (14.3.32) 
Therefore, the line profile would be given by 
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   (14.3.33) 
This line profile is dish-shaped and is characteristic of this type of mass atmospheric 
motion. Since the equivalent width remains constant for macroscopic broadening, the 
central depth of the line will decrease for increasing vm. 

 
 

Figure 14.3 schematically indicates the apparent disks of two 
idealized stars. Panel (a) depicts the lines of constant line-of-sight 
velocity for a macroturbulent stellar atmosphere where the turbulent 
motion is assumed to be along the stellar radius and of a fixed 
magnitude vm. Panel (b) also indicates the lines of constant radial 
velocity for a spherical star that is spinning rigidly. 

 
 Clearly a real situation replete with limb-darkening, a velocity dispersion of 
the turbulent elements, an anisotropic velocity field, along with a spectrum of sizes 
for the turbulent eddies, would make the problem significantly more difficult. A 
great deal of work has been done to treat the problem of turbulence in a more 
complete manner, but the results are neither simple to discuss nor easy to review. 
D.Mihalas11 gives an introduction and excellent references to this problem. 
 
 Broadening by Stellar Rotation         As we saw in Chapter 7, rapid rotation 
of the entire star will lead to significant distortion of the star and a wide variation of 
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the parameters that define a stellar atmosphere over its surface. In such a situation, 
most of the assumptions we have made for the purpose of modeling the atmosphere 
no longer apply and recourse must be made to a more numerical approach (see 
G.Collins12 and J.Cassinelli13). However, as with macroturbulence, some insight may 
be gained by considering the effects of rotation on the line profile of a slowly 
rotating star. Such a model is originally due to G.Shajn and O.Struve13 and is now 
commonly referred to as the Struve model. 
 
 Consider a uniformly bright spherical star which is rotating as a solid body. 
Except for the rotation, this is essentially the same model as that used for the 
discussion of macroturbulence (see Figure 14.3). If we defineθ and φ, respectively, to 
be the polar and azimuthal angles of a spherical coordinate system with its polar axis 
aligned with the rotation axis of the star, then the velocity toward the observer's line 
of sight is 

                               (14.3.34) 
where veq is the equatorial velocity of the star and i is the angle between the line-of-
sight and the rotation axis, called the inclination. An inspection of Figure 14.3 and 
some geometry leads one to the conclusion that for spherical stars the product sinì 
sinφ is constant on the stellar surface along any plane parallel to the meridian plane. 
Thus, any chord on the apparent disk that is parallel to the central meridian is a locus 
of constant radial velocity (see Figure 14.3). Any profile formed along this cord will 
be displaced in frequency by an amount 

              (14.3.35) 
 
 For a sphere of unit radius, the length of the chord is 2µ.  If we make the 
same assumptions about the intrinsic line profile as were made for the case of 
macroturbulence (i.e., it can be locally represented by a delta function), then the 
amount of flux removed from the continuum intensity by any profile located on one 
of these chords will just be proportional to the length of the chord. Therefore, 

         (14.3.36) 
which leads to a profile of the form 
 

 (14.3.37) 
Except for the replacement of the turbulent velocity by the equatorial velocity, the 
rotational profile has the same form as the profile for macroturbulence [equation 
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(14.3.33)]. This points out a fundamental problem of Doppler broadening by mass 
motions. In general, it is not possible to infer the velocity field from the line profile 
alone. To be sure, the presence of limb-darkening would affect these two cases 
differently, as would the introduction of gravity darkening for the case of rotation. 
But the non-uniqueness remains for the general case, and any determination of the 
velocity field from the analysis of line profiles is strongly model-dependent and 
usually relies on some assumed symmetry. 
 
 Many of the simplifying assumptions of these models for macroturbulence 
and rotation can be removed for a modest increase in complexity. In the case of 
rotation, if the local line profile were not given by a delta function but had an 
intrinsic shape r'(x) where  

                                         (14.3.38) 
then the observed line profile would be given by the convolution integral 

                   (14.3.39) 
Here Q(y) is known as the rotational broadening function which, if limb-darkening 
is included, is given by A.Unsöld15 as 

         (14.3.40) 
 
The parameter β is the first-order limb-darkening coefficient. Consider the case for  β 
= 0 and that the intrinsic line profile is a delta function. It is clear that equations 
(14.3.39) and (14.3.40) will yield equation (14.3.37) as long as the integral of Q(y) is 
normalized to unity. Integration of equation (14.3.40) will satisfy the skeptic that this 
is indeed the case. It is also clear that the general effects of rotation are not 
qualitatively very different from those implied by equation (14.3.37). While 
quantitative comparison with observation will clearly be affected by such things as 
the intrinsic line profile and limb-darkening, a truly useful comparison will have to 
go even further and include the effects of the variation of the atmospheric structure 
over the surface on the line profile. 
 
 While macroturbulence and rotation constitute the most important forms of 
macroscopic broadening, there are others. The presence of magnetic fields can split 
atomic lines through the Zeeman effect. In some instances, this can lead to 
anomalously broad spectral lines and subsequent errors in the abundances derived 
from these lines. In some instances, the broadening is sufficiently large to allow the 
estimation of the magnetic field itself. Fortunately, strong magnetic fields appear to 
be sufficiently rare among normal stellar atmospheres to allow us to ignore their 
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effects most of the time. However, we should be ever mindful of the possibility of 
their existence and of the effects that they can introduce in the shaping of spectral 
lines. 
 
14.4   Collisional Broadening 
 
To this point, we have described the broadening of spectral lines arising from 
intrinsic properties of the atom and the collective effects of the motion of these 
atoms. However, in all but the most extreme cases of macroscopic broadening, the 
most prominent source of broadening of spectral lines results from the interaction of 
the absorbing atom with neighboring particles of the gas. Since these particles are 
often charged (even the neutral atoms possess the potential field of an electric 
dipole), their potential will interact with that of the atomic nucleus which binds the 
orbiting electrons. This interaction will perturb the energy levels of the atom in a 
time-dependent fashion. The collective action of these perturbations on an ensemble 
of absorbing atoms is to broaden the spectral line. The details of this broadening 
depend on the nature of the atom and energy level being perturbed and the properties 
of the dominant perturber. All phenomena that fall into this general class of 
broadening mechanisms are usually gathered under the generic term collisional 
broadening. However, some authors refer to this concept or a subset of it as pressure 
broadening, on the grounds that there can be no collisions unless the gas has some 
pressure. The use of the different terms is usually not of fundamental importance, 
and the basic notion of what is behind them should always be kept in mind. 
 
 There is some confusion in the literature (and much more among students) 
regarding the terminology for describing these processes. Some of this results from a 
genuine confusion among the authors, but most derives from an unfortunate choice 
of terms to describe some aspects of the problem. You should keep clearly in mind 
what is being described during any discussion of this topic - the broadening of 
atomic energy levels resulting from the perturbations of neighboring particles. We 
adopt a variety of theoretical approaches to this problem, each of which has its own 
name. Care must be taken lest the name of the theoretical approach be confused with 
a qualitatively different type of broadening. We discuss perturbations introduced by 
different types of perturbers, each of which will produce a characteristic line profile 
for the absorbing gas. Each of these profiles has its own name so as to delineate the 
type of perturbation. However, they are all just perturbations of the energy levels. 
Each type will generally be discussed in a "vacuum", in that we assume that it is the 
only form of perturbation that exists, when in reality virtually all types of 
perturbations are present at all times and affect the energy levels. Fortunately, one of 
them usually does dominate the level broadening. 
 
 There are two main theoretical approaches to collisional broadening. One 
deals with the weak, but numerous, perturbations that cause small amounts of 
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broadening. The other is concerned with the large, but infrequent, perturbations that 
determine the shape of the wings of the line. It as somewhat unfortunate that the 
former theoretical approach is known as impact phase-shift theory, while the latter is 
called the statistical or static broadening theory. The word impact conjures up 
visions of violence, yet the theoretical approach labeled by this word is concerned 
only with the weakest and least violent of the interactions. Similarly, the term static 
implies calm, but this approach deals with the most violent perturbations. So be it. 
We try to justify this apparent anomaly during the specific discussions of these 
approaches. In addition, we clearly label the myriad terms as they are introduced so 
that those which are synonymous are clearly separated from those which have unique 
meanings. 
 
 To estimate the perturbation to the atom that changes the energy of the 
transition and thereby broadens the line, we must characterize the nature of the 
collision. The two theoretical approaches to collisional broadening differ in this 
description. Both approaches are largely classical in form so that whatever is true for 
absorption is also true for emission. So we often deal with the effects of a collision 
on a radiating atom with the full intention of applying the results to absorption. 
 
 a   Impact Phase-Shift Theory 
 
  The approach of impact phase-shift theory assumes that the collision 
is of a very short duration compared to the span of time during which the atom is 
actually radiating (or absorbing) the photon. Thus, 

                                        (14.4.1) 
It is the short duration of the collision that is responsible for the name impact for the 
theoretical approach. 
 
 Determination of the Atomic Line Absorption Coefficient    Suppose that 
the atom radiates in an undisturbed manner between collisions with a frequency ω0. 
The electric field of the emitted photon will vary as 
 

                          (14.4.2) 
where T is the time between collisions. Further assume that the radiation of the 
photon does not continue before or after the collision, so that 
  

                               (14.4.3) 
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 It is this interruption in the emission of the photon, or at least a complete and 
discontinuous change in the phase of the emitted photon that terminates the wave 
train and provides the motivation for the second half of the name for this approach. 
Since a sine wave of finite length must contain wave components of higher 
frequency introduced by the discontinuity of the wave train, the emitted photon will 
have more components than the fundamental frequency and thus the line will appear 
to be broadened. To find this distribution in frequencies, we must take the Fourier 
transform of the temporal description of the electric field of the photon. So 

     (14.4.4) 
or 

                  (14.4.5) 
Since the power spectrum of the emitted photon will depend on the square of the 
electric field, 

                    (14.4.6) 
Here we have assumed that we will be dealing with emissions and absorptions that 
are totally uncorrelated, which for random collisions occurring in a sea of unrelated 
atoms is a perfectly reasonable assumption. 
 
 Now to determine the effects of multiple collisions (or numerous atoms), we 
must combine the effects of these collisions, which means that we must have some 
estimate of the time between them T. Let P(t) be the probability that a collision has 
not occurred in a time t measured from the last collision. Now if the collisions are 
indeed random, the differential probability dp that a collision will occur in a time 
interval dt is 
 

                                          (14.4.7) 
 
where T0 is the average time between collisions. Thus, the differential change in the 
probability P(t) is 
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or 

                                    (14.4.9) 
Since a collision must occur at some time, we can determine the constant in equation 
(14.4.9) by normalizing that expression to unity and integrating over all time. Thus 
we see that the collision frequency distribution is a Poisson distribution of the form 

                              (14.4.10) 
and the constant of proportionality in equation (14.4.6) is 1/T0. 
 
 To obtain the total energy distribution or power spectrum resulting from a 
multitude of collisions, we must sum the power spectra of the individual collisions 
multiplied by the probability of their occurrence. Thus, 
 

     (14.4.11) 
We can use the same normalization process implied by equations (14.1.3), (14.1.4), 
and (14.2.21) to write the atomic absorption coefficient as 
 

                  (14.4.12) 
    In going from equation (14.4.11) to (14.4.12), we have changed from circular 
frequency w to frequency n so that the appropriate factors of 2π must be introduced. 
The quantity 2/T0 is usually called the collisional damping constant so that 

                                        (14.4.13) 
Since the form of equation (14.4.12) is identical to that of equation (14.3.21), we can 
immediately obtain the convolution of the collisional damping absorption coefficient 
with that for radiation damping by simply adding the respective damping constants: 

                                 (14.4.14) 
The combined absorption coefficient could then be convolved with that appropriate 
for microturbulent Doppler broadening producing a total line profile that is still a 
Voigt profile but with 
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                                    (14.4.15) 
where Γ is the combined damping constant for radiation and collisional damping. 
However, before this result can be of any practical use, we must have an estimate 
of the collisional damping constant in terms of the state variables of the 
atmosphere.   
 
 Determination of the Collisional Damping Constant     
Determining the collisional damping constant is equivalent to determining the 
average time between collisions T0. To do this, it is necessary to be quite specific 
about exactly what constitutes a collision. We follow a method originally due to 
Victor Weisskopf16 and described by many authors17-19. Consider that the 
perturbation of an energy level ∆E caused by a passing perturber has the distance 
dependence 

                          (14.4.16) 
which will produce a change in the frequency of the emitted photon of 

                                 (14.4.17) 
  
 The constant Cn is known as the interaction constant, and it must be 
determined empirically from laboratory experiments involving the kinds of particles 
found in the collisions. Since all these collisions are mediated by the electromagnetic 
force, the typical interaction can be viewed as a "long range" one so that the short 
collisions [see equation (14.4.1)] refer to distant collisions where the colliding 
particle is located near its point of closest approach. This distance is commonly 
referred to as the impact distance, or impact parameter. Since the collision is short 
and the interaction weak, we can assume that the perturbing particle is largely 
unaffected by the encounter, and its path can be viewed as a straight line (see Figure 
14.4). This assumption is usually referred to as the classical path approximation and 
it appears in one form or another in all theories of collisional broadening. 
 
 We wish to calculate the entire frequency shift caused by the collision 
because when the accumulated phase shift becomes large enough, it is reasonable to 
say that the wave train has been interrupted and a collision has occurred.  
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 Figure 14.4 shows the "classical path" taken by a perturbing particle 
under the Weisskopf approximation. The point of closest approach ρ is 
called the impact parameter. 

 
To estimate this total phase shift, it is necessary to describe the path taken by the 
particle, so we use of the classical path approximation. It is clear from Figure 14.4 
that 

                                  (14.4.18) 
This enables the total phase shift η caused by the encounter to be calculated from 

       (14.4.19) 
     where 

                              (14.4.20) 
 
 Here Γ(x) is the gamma function, and it should not be confused with the 
symbol for the damping constant. Before using this for the determination of the 
average time between collisions, we must decide what constitutes an interruption in 
the wave train. Weisskopf took this value of η to be 1 radian. The smaller the value 
for the phase shift, the larger the value of the impact parameter may be that will 
produce that phase shift. The value of the impact parameter ρ0 that produces the 
minimum phase shift η which constitutes an interruption in the wave train is known 
as the Weisskopf radius: 
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 Since the Weisskopf radius defines the distance inside of which any 
encounters will produce a large enough phase shift to be considered a collision, it 
may be used to calculate a collision cross section σ = πρ0

2 and an average time 
between collisions T0. The collision frequency is  

                (14.4.22) 
where N is the number density of the perturbing particles, l is the mean free path 
between collisions, and <v>rel is the relative velocity between the perturber and the 
perturbed atom. That relative velocity is 

                     (14.4.23) 
where Ai is the atomic weight of the constituents of the collision in units of the mass 
of the hydrogen atom. Thus, we can write the collisional damping constant as  

                    (14.4.24) 
where N is the number density of perturbers and  

                     (14.4.25) 
 All that remains is to specify the power law that describes the perturbing 
force and the interaction constant Cn. Since the force that mediates the collision is 
electromagnetic, the exponent of the perturbing field is determined by the electric 
field of the perturber. A simple way of understanding this is to view the passage of 
the perturber as interposing a "screening" potential energy between an optical 
electron and the nucleus. The screening potential energy will depend on the locally 
interposed energy density of the perturber's electric field which is proportional to E2 
so that for a perturbing ion or electron, n = 4. This is called the quadratic Stark effect 
because it depends quadratically on the perturber's electric field. If the perturber is a 
neutral atom, it still possesses a dipole moment that produces a measurable field near 
the particle. However, this field varies as r-3 so that the perturbing energy density 
varies as r-6 and     n = 6. Broadening of this type is called van der Waal's broadening 
and it will to play a role in relatively cool gases where there are few ions.  
 
 If the atomic energy level of interest is degenerate, the interposition of an 
external electric field will result in the removal of the degeneracy and a splitting of 
the energy level into a set of discrete energy levels. The amount of the splitting is 
proportional to the electric field. Since a time-dependent splitting is equivalent to a 
broadening brought about by a shift of the energy level itself, the broadening of 
degenerate levels will occur, but their broadening will be directly proportional to the 
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electric field of the perturber rather than to its square. Thus the broadening of a 
degenerate level by ions or electrons will produce n = 2. This form of broadening is 
known as the linear Stark effect. This form of broadening creates an interesting 
problem for the impact phase-shift theory since the integral for the minimum phase 
shift [equation (14.4.19)] will not converge for n = 2 and the theory is not applicable. 
Since the energy levels of hydrogen are degenerate, and the hydrogen lines are 
among the most prominent in stellar spectra, we are left with the somewhat 
embarrassing result that these lines can not be dealt with by the impact phase-shift 
theory and we have to resort to some other description of collisional broadening to 
obtain line profiles for hydrogen. The problem basically arises from the 1/r2 nature of 
the perturbing field and is not restricted to the theory of line broadening. Since the 
number of perturbers increases as r2 while the perturbation from any one of them 
declines as r2, the contribution to the total perturbation from particles at a given 
distance is independent of distance. Thus some cutoff of the distances to be 
considered must be invoked. This problem arises frequently in gravitation theory 
where there can be no screening of the potential field and the fundamental force is 
also long-range. In our case, the Heisenberg uncertainty principle sets a limit on the 
smallest perturbation that can matter and hence an upper limit on the volume of 
space to be considered. 
 
 The case of the broadening of degenerate levels by neutral atoms does 
present a situation that can be dealt with by the impact phase-shift theory. Here the 
electric field near the perturber varies as r-3, so that the proper value of n is  n = 3. In 
the special case where the broadening is by atoms of the same species as the atom 
being perturbed a significant enhancement of the broadening occurs. Indeed, for 
astrophysical cases, the broadening of spectral lines arising from degenerate levels 
by neutral particles is of interest only when the broadening occurs from collisions 
with atoms of the same species. For that reason, this kind of broadening is known as 
self-broadening. These considerations are summarized in table 14.1.  
 
 An important improvement was made by Lindholm20 and Foley21 which 
included the effects of multiple collisions on the line. Although the multiple 
collisions are weak, they are frequent. The result of their work is that the secondary 
collisions introduce a slight shift in the line center of the atomic absorption 
coefficient so that 
 

          (14.4.26) 
where 

               (14.4.27) 
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  Limits of Validity for Impact Phase-Shift Theory     In developing the 
impact phase-shift theory, we tacitly assumed that the collisions were adiabatic. By 
that we mean that all the perturbing energy was contained in the perturbation and 
none was lost to other processes. There were no collisional transitions within the 
energy level or between the split levels of the degenerate cases. This will be a 
reasonable approximation as long as the splitting of the degenerate levels or the 
width of the perturbed level is greater than the uncertainty of energy of the perturber 
due to the Heisenberg uncertainty principle. 

 
Since the duration of the collision is of the order of ρ/v, the uncertainty of the 
colliding particle's energy is of the order 

                                            (14.4.28) 
In equation (14.4.16) we estimated the energy of the perturbation itself so that  
 

                   (14.4.29) 
which requires that 

                         (14.4.30) 
So it appears that only collisions that occur inside the Weisskopf radius will be 
adiabatic, and all the energy of the collision goes into perturbing the energy level. 
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noting that the duration of the collision is of the order of ρ/v. The radiation time is of 
the order of 1/∆ω, so that 

                                   (14.4.31) 
if the classical path approximation is to be valid. However, equation (14.4.29) places 
a constraint of the impact parameter ρ that must be met if the collisions are to be 
adiabatic. Using equation (14.4.29) to eliminate ρ/v from equation (14.4.31) we get 

                                 (14.4.32) 
Obviously the impact phase-shift theory will be valid only for the inner part of the 
line. For the outer part we must turn to another description of collisional broadening. 
 
 b   Static (Statistical) Broadening Theory 
 
  In some real sense, the impact phase-shift theory follows the life 
history of a single radiating (or absorbing) atom which is subject to numerous weak 
collisions of short duration. The atomic absorption coefficient is then represented by 
the average of many atoms in various phases of that temporal history. In static 
broadening theory, the atomic absorption coefficient is constructed from the average 
of many atoms that are subject to the electric field of perturbers scattered randomly 
about. The opposite assumption is made concerning the duration of the collision 
compared to the radiation time. That is, the collision time is much longer than the 
radiation time, so that 

                                      (14.4.33) 
 
 It is as if we took a picture of the perturbed atom with a shutter duration of 
the radiation time for the photon. In the impact phase-shift theory, we would see a 
blur of colliding tracks of the perturbers, while in the case of statistical broadening 
the picture would show individual perturbers fixed in space and some might be quite 
close to the atom in question. We are most interested in these near perturbers, for 
they are responsible for the largest perturbations to the atomic energy levels which in 
turn generate the broadest part of the line. This is precisely the part of the line for 
which the impact phase-shift theory fails. 
 
 . 
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Figure 14.5 shows a schematic view of the universe of perturbers 
under the assumptions of the Static Theory of broadening. The 
perturbers are randomly distributed in space, but only the "nearest 
neighbor" will be used for calculating the perturbing electric field. 

 
 Remember that the perturbation arises from the presence of an external 
electric field. In the static theory of line broadening, all particles are fixed in space, 
and the perturbing electric field is the vector sum of the electric fields of all the 
perturbers (see Figure 14.5). However, since we are concerned mostly about the 
strongest perturbations that form the wings of the line, we address only the perturbers 
closest to the atom in question 
 
 Nearest-Neighbor Approximation and the Distribution of Electric Fields 

The assumptions required for the development of the static theory of broadening are 
similar in form and content to those required of the impact phase-shift theory. The 
collision time is assumed to be much larger than the radiation time [equation 
(14.4.33)] so that from the point of view of the radiating atom, the universe is frozen 
in time. Implicit in this assumption is the notion that every perturber has a well-
defined position (zero) and momentum with regard to the perturbed atom. This is 
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equivalent to the classical path approximation of the impact phase-shift theory in that 
the position and momentum of the perturber are specified throughout the interaction 
time and are such that they are unaffected by the interaction. 
 
 To these complementary assumptions we add one more. Let us assume that 
the perturbative electric field can be represented by the electric field of the perturber 
closest to the atom and by that perturber alone. This is known as the nearest-
neighbor approximation. Our task, then, is to find the probability distribution 
function for the perturber lying within a specified distance and thereby producing a 
perturbing electric field of a particular strength. Consider a spherical shell of 
thickness dr located a distance r from the perturbed atom (see Figure 14.5), and let 
the probability that the nearest neighbor is located within that shell be P(r)dr. Then 
the probability that the nearest neighbor lies within a sphere of radius r is . 

Since the universe is not empty, there must be a nearest neighbor somewhere, so that 
the probability that the nearest neighbor does not lie within that sphere is 
(1 ). Now if the region around the perturbed atom is of uniform density, 

the probability of finding any perturber within the spherical shell of thickness dr 
located at r is 4πr

∫
r

drrP
0

)(

∫−
r

drrP
0

)(

2ndr, where n is the perturber density. Thus, the probability that the 
particle in that shell is the nearest neighbor is just the probability that there is a 
particle there multiplied by the probability that there is no particle nearer to the 
perturbed atom. So 

               (14.4.34) 
 This is an integral equation for the distribution function of nearest neighbors 
P(r). We can solve it most easily by differentiating with respect to r and forming a 
differential equation for, P(r)/4πr2n. The solution to this equation is 

                       (14.4.35) 
However, we need the probability distribution of perturbing electric fields, so we 
assume that the perturber has a field that behaves as 

                                             (14.4.36) 
Then, by substituting this dependence of the electric field on r into equation 
(14.4.35), the probability that an atom will see a perturbing electric field of strength 
E is 

               (14.4.37) 
where 
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                                   (14.4.38) 
and it is sometimes called the normalizing field strength. If we further define the 
dimensionless quantity 

                                         (14.4.39) 
we can write the probability distribution for this dimensionless field strength as 

                (14.4.40) 
 
 Finally, if we consider the case for broadening by ions or electrons, then      m 
= 2 and we have 

                         (14.4.41) 
which is usually called the Holtsmark distribution function. As can be seen from 
Figure 14.6, the probability of finding a weak field due to the nearest neighbor is 
very small simply because it is unlikely that the nearest neighbor can be so far away 
and still be the nearest neighbor. As the field strength rises, so does the probability of 
it being the perturbing field, peaking between 1 and 2 times the normalized field 
strength. Stronger fields become less likely because the volume of space surrounding 
the atom within which the perturber would have to exist becomes just too small. 
 
 Behavior of the Atomic Line Absorption Coefficient If we assume that the 
perturbative change in the atomic energy level is proportional to the electric field to 
some power, then we can write 

                         (14.4.42) 
 We can then use the nearest-neighbor distribution function to generate a probability 
density distribution function for the absorption of photons at a particular frequency 
shift ∆ν as 

                (14.4.43) 
For large frequency or wavelength shifts, the argument of the exponential approaches 
zero, so the wavelength-dependent probability of absorption becomes 
 

                           (14.4.44) 
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Figure 14.6 shows the Nearest Neighbor distribution function for the perturbing 
electric field of the nearest neighbor assuming that it is an ion or electron as the solid 
line. The dashed line is for the Holtsmark distribution that includes the contribution 
from the rest of the gas. The parameter δ is a measure of the screening potential of 
the nearest neighbor [see Mihalas11 (pp. 292-295)]. 

 
 This is precisely the range for which the static theory through the nearest-
neighbor approximation was expected to be accurate. Since the atomic line 
absorption coefficient is indeed proportional to the probability of photon 
absorption, its behavior in the far wings of a line is 
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                         (14.4.45) 
Table 14.2 provides a brief summary of the asymptotic dependence of the 
absorption coefficient in the wings of the line for the various types of interactions 
discussed. 
 

 
 Finally, we may find the constant of proportionality for the atomic line 
absorption coefficient in terms of the interaction constant for the force law Cl. 
This is analogous to the constant Cn that appears in equation (14.4.17) and is 
usually determined empirically. In terms of this constant, the atomic line 
absorption coefficient becomes 

              (14.4.46) 
where am is given by equation (14.4.20), and  

                              (14.4.47) 
 In the broadening of degenerate levels, the splitting of the energy levels is so 
large that the line should be considered to consist of individual linear Stark 
components, each of which is quadratically Stark broadened. Under these conditions, 
the atomic line absorption coefficient for the combined Stark components becomes 

          (14.4.48) 
 
 If one were to improve on the static theory, the most obvious place would be 
to relax the nearest-neighbor approximation. The problem of including an ensemble 
of perturbers, all with their electric fields adding vectorially, was considered by 
J.Holtsmark22 and solved by S. Chandrasekhar23, who also provides tables of the 
results. As one might expect, the resultant form is similar to that of the nearest-
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neighbor distribution in shape but somewhat more spread out (see Figure 14.6). 
Unfortunately the result takes the form of an integral so a complete description must 
be obtained numerically. However, for β in the vicinity of 1 we get the following 
asymptotic formula for W(β): 

  (14.4.49) 
As we might expect, the lead term of this series is just that of the nearest-neighbor 
approximation [see equation (14.4.41).] 
 
 Limits of Validity and Further Improvements for the Static Theory   
 Since the assumption relating the collision time to the radiation time led to a 
limit on the range of validity for the impact phase-shift theory [equation (14.4.32)], 
we should not be surprised if the same were true for the static theory. This is indeed 
the case and the result is known as the Holstein relation, can be deduced from 
equation (14.4.32) almost by inspection: 

                                (14.4.50) 
So, as we hoped at the outset of the development of the static theory, it will be valid 
for precisely those regions of the line profile for which the impact phase-shift theory 
fails.  
 Of course, any microscopic inspection of a problem usually finds phenomena 
that provide additional complications for the solution. For example, we have 
assumed that the perturbers interact with the atom in question but do not interact 
among themselves. In reality an ion will attract electrons so as to create a neutral 
plasma on as small a scale as possible. In effect, then, the plasma will try to shield 
the ions from even more distant perturbers. This phenomenon is known as Debye 
shielding and is discussed in some detail by Mihalas11 (pp. 292-295). The basic effect 
is density dependent and tends to flatten the Holtsmark distribution still further, 
thereby broadening the line even more. Fortunately, for normal stellar atmospheres 
the densities are not large enough to make Debye shielding a major effect until one 
reaches optical depths in the line that are quite remote from the boundary. 
  
 The treatment of collisional line broadening described so far has been based 
on purely classical considerations and has now been largely replaced by quantum 
mechanical calculations of the atomic line absorption coefficient for the more 
important stellar spectral lines. However, the quantum mechanical treatment is 
considerably less transparent than the classical one, so we give only the basic form. 
The power spectrum for the line is given by 

(14.4.51) 
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where P is the probability density matrix for the atomic states involved in the 
formation of the spectral line, and Q is the matrix of dipole moments with elements 

                             (14.4.52) 
The wave functions Ψi must include the effects of the perturbers as well as the 
atomic states of interest. A very complete discussion of the quantum theory of 
spectral line formation is given by Hans Griem24. 
 
 For simple lines the classical theories of collisional broadening produce line 
profiles that agree well with observation. However, for the stronger lines of hydrogen 
and helium, any serious model should involve an atomic absorption coefficient based 
on the quantum mechanical description. While tables of these coefficients exist for 
many important lines (see Griem24 and references there), much remains to be done to 
produce accurate values for many lines of astrophysical interest.  
 
14.5   Curve of Growth of the Equivalent Width  
 
 While we have discussed the most important aspects of the formation of 
spectral lines, we have said little about the most important contributor to the 
appearance of the line in the spectrum - the abundance of the atomic species giving 
rise to the line. Obviously the more absorbers present in the atmosphere, the stronger 
the associated spectral line will appear. However, the quantitative relationship 
between the abundance and the equivalent width is not simple and is worthy of some 
discussion. Although most contemporary determinations of elemental abundances 
rely on detailed atmospheric modeling with the abundance as a parameter to be 
determined from comparison with observation, the classical picture of the relation 
between the equivalent width and the abundance is quite revealing about what to 
expect from such models. That classical quantitative relationship is known as the 
curve of growth. Some students have wondered what is growing in the curve of 
growth. The answer is that the equivalent width increases or "grows" with increasing 
abundance. 
 
 a  Schuster-Schwarzschild Curve of Growth 
 
  To create a curve of growth, we must relate the equivalent width to 
the atomic abundance. This requires some model of the atmosphere in which the 
atoms reside.  For purposes of illustration, we take the simplest model possible. In 
Chapter 13 we set up the equation of radiative transfer for line radiation [equation 
(13.1.6)], and we solved it for some special cases. For the Schuster-Schwarzschild 
atmosphere, this led to a line profile given by equation (13.2.8): 
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                             (14.5.1) 
The definition of τ0 allows us to write 

(14.5.2) 
where Ni is the column density of the atom giving rise to the line and <Sν> is the line 
absorption coefficient averaged over depth. Since for this simple model the 
atmospheric conditions are considered constant throughout the cool gas, we drop the 
average-value symbols for the remainder of this section. We have already seen 
[equation (14.3.27)] that for many atomic lines the atomic line absorption coefficient, 
including the effects of radiation damping, collisional damping, and Doppler 
broadening, can be written as 

                                      (14.5.3) 
where H(a,u) can be either the Voigt or normalized Voigt function depending on 
what constants have been absorbed into S0. Thus the line profile for the Schuster-
Schwarzschild atmosphere is 

         (14.5.4) 
 To relate this to the equivalent width, equation (14.5.4) must be integrated 
over the frequencies contained the line so that 
 

       (14.5.5) 
It is convenient to express the frequency-dependent optical depth in the line in terms 
of the optical depth at the line center χ0 so that 

                                  (14.5.6) 
From equations (14.5.2), and (14.5.3) 
 

                     (14.5.7) 
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we can write the optical depth in the line as  

                       (14.5.8) 
where ξ ≡ ∆λ/∆λd. Substitution into equation (14.5.5) yields 

              (14.5.9) 
The integral can be expanded in a series so that 

(14.5.10) 
  But 

                         (14.5.11) 
Thus, we can write the equivalent width in the line as  

        (14.5.12) 
This, then, represents the first part of the curve of growth, and the equivalent width is 
indeed directly proportional to χ0 and hence the abundance Ni. This is a 
commonsense result that simply says that the number of photons removed from the 
beam is proportional to the number of atoms doing the absorbing, so that section of 
the curve of growth is known as the linear section. 
 
 However, the seeds of difficulties are apparent in the higher-order terms in 
equation (14.5.12). As the number of absorbers increases, we would expect that some 
atoms high in the atmosphere to be "shadowed" by atoms lower in the atmosphere. 
When all the photons at a given frequency have been absorbed, then the further 
addition of atoms that can absorb at those frequencies will make no change in the 
equivalent width. When this happens, the line is said to be saturated. As the optical 
depth in the line center χ0 increases, the term in brackets will fall below unity and the 
curve of growth will increase more slowly than the linear growth. For 0 ≤ χ0 ≤ 0.5, 
the series may be terminated after the first term. However, for larger values of χ0, a 
somewhat different expression of the integral on the left hand side of equation 
(14.5.10) is in order. If we make the transformation 
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                          (14.5.13) 
the equivalent width becomes 
 

(14.5.14) 
If χ0 > 55, all but the lead term of the approximation may be ignored. However, in 
the region where 0.5 < χ0 < 55, the series given by either equation (14.5.12) or 
equation (14.5.14) must be used. From the lead term of equation (14.5.14) it is clear 
that as the Doppler core saturates, the equivalent width grows very slowly as  

                                (14.5.15) 
This is known as the "flat" part of the curve of growth. 
 
 As the abundance increases still further, a significant number of atoms will 
exist that can absorb in the damping wings of the line and the equivalent width will 
again begin to increase, but at a rate that will depend on the damping constant 
appropriate for the line (see Figure 14.7). 
 
 Once more we will need a different representation of the optical depth that is 
appropriate for the damping wings of the line. From the definition of the 
dimensionless variables of the Voigt function [see equation (14.3.23)] 

                                      (14.5.16) 
so that we can rewrite equation (14.5.5) with the aid of equation (14.5.6)  to obtain 

             (14.5.17) 
The Voigt function as given in equation (14.3.26) can be approximated for large u as 

                   (14.5.18) 
For modest values of the damping parameter a, H(a,0) is near unity so that 

                   (14.5.19) 
So for large abundances the curve of growth will again increase in a manner that 
depends on the square root of the damping constant as well as the square root of the 
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abundance. Except for the separation brought about by the growth of the damping 
wings of the line, the curve of growth is a single-valued function of Wλ/∆λd versus 
the optical depth at the line center χ0. Both these parameters are dimensionless, so for 
this model a single curve satisfies all problems. However, it is worth remembering 
that the Schuster-Schwarzschild model is correct for scattering lines only, and very 
few spectral lines that go into abundance calculations are scattering lines. Thus, the 
classical curve of growth can give only very approximate results even if it is 
calculated exactly. 

 
Figure 14.7 shows the curve of growth for the classical Schuster-
Schwarzschild model atmosphere. 

 
 
 
 b   More Advanced Models for the Curve of Growth 
 
  There are several ways to improve the accuracy of the curve of 
growth. First, we could use a more accurate solution to the equation of radiative 
transfer such as the Chandrasekhar discrete ordinate method. The use of the 
equations of condition on the boundary values [equation (10.2.31)] enables us to 
obtain a profile of the form 
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             (14.5.20) 
The behavior of the optical depth could then be substituted into equation (14.5.20) 
and from there into equation (14.5.5), thereby relating the equivalent width to the 
optical depth at the line center. However, this would only improve the details of the 
radiative transfer without improving the model itself. Since we know that the errors 
of the two-stream (Eddington) approximation are of the order of 12 percent, this is a 
small improvement indeed for the additional work involved. 
 
 A significant improvement could be made by using the Milne-Eddington 
model atmosphere. Here the line profile is given by equation (13.2.29), where the 
frequency dependence is entirely contained in the behavior of ℒν, εν, and ην with 
frequency. In addition, the parameters a and b which describe the surface 
temperature and temperature gradient need to be specified. Laborious as the task of 
constructing these more sophisticated curves of growth is, it was done by Marshall 
Wrubel25-27 in a series of papers. Although the additional parameters required by the 
model are annoying, the improvement in the representation of the star by these 
models is usually worth the effort. It is probably not worth the trouble to generate 
more sophisticated classical models than these. Direct modeling by a model 
atmosphere code is the appropriate approach, for one can remove virtually all the 
assumptions required for the classical models so that the accuracy is largely 
determined by the accuracy of the atomic constants characterizing the line.  
 
 
 c   Uses of the Curve of Growth 
 
 Determination of Doppler Velocity and Abundance    We already indicated 
that the curve of growth can be used to estimate stellar abundances. However, it is 
possible (in principle) to learn a great deal more about the conditions in the 
atmosphere of the star from the curve of growth. Imagine that we have measured 
equivalent widths for a collection of lines that all arise from the same lower level for 
which the atomic parameters and damping constants are accurately known. Further 
suppose that the values for the lines span a reasonable range of the curve of growth. 
Thus we have empirical values for W(λi)/λi and )/(2 cmfe eiiλπ . The second of 
these two quantities, which we call Χi is given by 

                        (14.5.21) 
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Thus, a plot of Log Xi versus. Log[W(λi)/λi] will yield an empirical curve of growth 
that differs from the theoretical curve given in Figure 14.7 by a shift in both the 
ordinate and the abscissa. Since the lines all arise from the same lower level, N is the 
same for all points. The horizontal shift then specifies Log(v0/N), while the vertical 
shift specifies Log(c/v0). Thus both the abundance and the Doppler velocity are 
determined independently. To the extent that the kinetic temperature is known, we 
know the microturbulent velocity. If the span of the curve of growth is large enough 
to determine a, an average value of Γc may also be found. 
 
 Determination of the Excitation Temperature   Consider the situation 
where, in addition to the information given above, we know the equivalent widths for 
a number of lines arising from different states of excitation. Further assume that LTE 
holds so that the populations of those excited states are given by the Boltzmann 
formula. Then 

          (14.5.22) 
We have already determined v0, so we may correct the observed equivalent widths so 
that the observed values are brought into correspondence with the theoretical 
ordinate of the curve of growth Wλ/∆λd. The horizontal points will now miss the 
theoretical curve of growth by an amount 

     (14.5.23) 
or 

                   (14.5.24) 
Since everything about the lines in equation (14.5.24) is known, only the constant 
and the temperature are unknowns, and they can be determined by least squares. 
 
 Important parameters concerning the structure of a stellar atmosphere can be 
estimated from the classical curve of growth. Not only can the abundance of the 
elements that make up the atmosphere be measured, but also the turbulent velocity 
and excitation temperature can be roughly determined. However, to use the classical 
curve of growth is to make some very restrictive assumptions. The assumption that 
the parameters determining the lines are independent of optical depth is a poor 
assumption and is usually the reason that the excitation temperature does not agree 
with the effective temperature. In addition, the thickness of the atmosphere is 
probably not the same for all the lines used. Finally, the lines are usually not 
scattering lines. Nevertheless, the method should be used prior to undertaking any 
detailed analysis in order to set the ranges for the expected solution. Any 
sophisticated analysis that produces answers wildly different from those of the curve 
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of growth should be regarded with suspicion. 
 
 Finally, sooner or later, we must be wary of the assumption of LTE. In the 
upper layers of the atmosphere, the density will become low enough that collisions 
will no longer occur frequently enough to overcome the nonequilibrium effects of the 
radiation field, and the level populations of the various atomic states will depart from 
that given by the Saha-Boltzmann ionization-excitation formula. This will 
particularly affect the strong spectral lines that are formed very high up in the 
atmosphere. In the next chapter, we survey what is to be done when LTE fails. 
 
Problems 

 
1. Imagine a line whose intensity profile is 

 
 Calculate the observed line profile for a radially expanding atmosphere 
which  exhibits a velocity gradient 

 
 State any assumptions that you make in solving the problem. 
 
2. Consider a line generated by atoms constrained to move perpendicular to a 
 radius vector from the center of the star. Find an expression for the atomic 
 absorption coefficient due to Doppler broadening alone. 

 
3. Find the natural width for  
  a  Hβ 
  b  Mg II (λ4481)  
  c  FeI (λ3720) . 
 
4. Estimate the transition times from the natural widths of the lines in Problem 

3, and compare them with a crude estimate of the collision rates for atoms in 
these states. State clearly any assumptions you make. In what kind of star 
would you expect to find these spectral lines? 

 
5. If both the atoms of a radiating gas and the particles perturbing them are in 

statistical equilibrium, show that the average relative velocity between them 
is given by 
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 where µh = the mass of a unit atomic weight and A1 and A2 are the atomic 
 weight of the atom and perturber respectively. 

 
6. Find the far-wing dependence of the line absorption coefficient of an atom 

having nondegenerate energy levels which are broadened by perturbers 
having  only octopole moments of their charge configurations. 

 
7. Compute a line profile for Si II(λλ6347.10) for an A0V star. Use a model 
 atmosphere code if possible. 

 
8. Show that Wλ/λ = Wν/ν   
 
9. Use a model atmosphere code such as ATLAS to generate "curves of 

growth" for Fe I(λλ4476), Mg II(λλ4481), and Si II(λλ4130). Include a 
microturbulent velocity of 2 km/s. Consider the reference atmosphere to be 
one with Te = 104K, Log g = 4.0, and solar abundance (except for Fe, Mg, 
and Si). Compare your results with the classical curve of growth for a 
Schuster-Schwarzschild model atmosphere and obtain values for ∆λd, the 
kinetic  temperature, microturbulent velocity, and Γ for each line. Compare 
your results with the values used to generate the line profiles and discuss 
any differences. 

 
10. Consider the following situation: A 1-mm beam of neutral hydrogen gas with 

an internal kinetic temperature of 104 K is accelerated to an energy of 10-3eV 
 per atom. The beam enters a 10-m vacuum chamber and is directed toward a 
1-cm bar located in the center of the chamber and oriented at right angles to 
the beam. The bar has been charged to 107v. The beam passes through a 1-
mm hole in the bar and proceeds out the opposite side of the chamber. A 
spectrograph is placed so that it "looks" along the beam and sees the beam 
against a 2 ×104 K continuum blackbody source located near where the beam 
enters the chamber. Assuming that the beam density is sufficiently low to 
ensure that it is optically thin, but high enough to establish LTE, find the line 
 profile for Hβ. Further assume that the central depth of the line is 0.6. Find 
the equivalent width of Hβ and the density of hydrogen. On the basis of your 
results, discuss the validity of the assumptions you used. 

 
 
11. Consider a Schuster-Schwarzschild model atmosphere populated with 

several types of atoms having different atomic absorption coefficients. Find 
the theoretical curves of growth for each of these atoms. 
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 Compare with the classical solutions for the curve of growth. 
 
12. Let the probability of finding a value of the turbulent velocity projected along 

the line of sight v be uniform in the range -v0 # v # v0. The probability of 
finding a value of v outside this range is zero. In addition to turbulence, there 
are thermal Doppler motions present which correspond to a temperature T. 
Assuming that f and Γ are known, derive an expression for the atomic line 
absorption coefficient. Leave your answer in the form of a definite integral 
containing an error function. 

 
13. Consider a certain atom in the solar atmosphere at a point where the 

hydrogen abundance Nh = 1017cm-3 and T = 5500 K. The atom has a strong 
resonance line at l=5000Å with an Einstein A coefficient of 9.7 × 107s-1. The 
atom has interacted with a neutral hydrogen atom so that a frequency shift of 
∆ω = 2 × 106/r2 s-1 of the line frequency has resulted. Here, r is in angstroms. 

 a Make a reasonable estimate of how long the collision lasts.  
 b  Qualitatively justify the type of broadening theory you would use to 

 describe the atomic absorption coefficient. 
 c  What is the approximate cross-section for this event?  
 d  What is the value of Γ you would obtain from the impact phase-shift 

 theory of line broadening? 
 
14.      Suppose the data below are observed in a certain star. They all pertain to the 

 lines of the neutral state of the same element which has a partition function of 
2.0. The parameter εi refers to the lower level of the transition. 
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Using the Schuster-Schwarzschild model atmosphere, find  
 a the number of atoms per square centimeter above the photosphere, 
 b  the missing f value, and  
 c  the value for the Doppler velocity v0. 
 
References and Supplemental Reading 
 
1. Panofsky, W., and Phillips, M. Classical Electricity and Magnetism,  

Addison- 
 Wesley, Reading, Mass.,1955, p. 222. 

 
2. Slater, J.C., and Frank, N.H. Electromagnetism, McGraw-Hill, New               
               York1947, p. 159. 
 
3. Mihalas, D. Stellar Atmospheres,  W.H.Freeman, San Francisco, 1970,  
 pp. 86 - 92. 
 
4.  Weisskopf, V., and Wigner, E., Berechnung der natürlichen Linienbreite auf 
             Grund der Diracschen Lichttheorie, Zs. f. Physik 63, 1930, pp. 54 - 73. 
 
5.  Weisskopf, V., and Wigner,E., Über die natürliche Linienbreite in der            
            Strahlung des harmonischen Ozillators, Zs. f. Physik 65, 1930, pp. 18 - 29. 
 
6.  Harris, D. On the Line-Absorption Coefficient Due to Doppler Effect and       
             Damping,  Ap.J. 108, 1948, pp. 112 - 115. 
 
7.  Hummer, D. The Voigt Function - An Eight Significant FigureTable and        
             Generating Procedure,  Mem. R. astr. Soc. 70, 1965, pp. 1 - 32. 
 
8.  Finn,G., and Mugglestone,D. Tables of the Line-Broadening  Function           
             H(a,v), Mon. Not. R. astr. Soc. 129, 1965, pp. 221 - 235. 
 
 

 395



II ⋅ Stellar Atmospheres 
 

 

 
 
9.  Humíček, J. "An Efficient Method for Evaluation of the Complex Probability 

Function: The Voigt Function and Its Derivatives", J. Quant. Spectrosc. &  
Rad. Trans. 21, 1979, pp. 309 - 313. 

 
10.  McKenna, S. A Method of Computing the Complex Probability Function and 

Other Related Functions over the Whole Complex Plane,  Astrophy. & Sp. 
Sci. 107, 1984, pp. 71 - 83. 

 
11.  Mihalas, D. Stellar Atmospheres, 2d ed.,   W.H. Freeman, San Francisco, 
 1978,  pp. 463 - 471. 
 
12.  Collins II, G.W., "The Effects of Rotation on the Atmospheres of  Early-

Type Main Sequence Stars", Stellar Rotation, (ed.: A. Slettebak), Reidel,      
Dordrecht, Holland, 1970, pp. 85 - 109.  

 
13.   Cassenilli, J.P. "Rotating Stellar Atmospheres",  The Physics of Be Stars, 

(eds.: A.Slettebak and T. Snow),  Cambridge University Press, Cambridge, 
1987, pp. 106 - 122. 

 
14.  Shajn,G., and Struve,O. On the Rotation of Stars,  Mon. Not. R. astr. Soc. 89, 

1929, pp. 222 - 239.  
 
15.  Unsöld, A. Physik der Sternatmospharen, 2d Ed.,Springer-Verlag, Berlin,      
           1955, pp. 508 - 518. 
 
16.  Weisskopf, V.  Zur Theorie der Kopplungsbreite und der Stossdampfung,      
            Zs. f. Physik 75, 1932,  pp. 287 - 301. 
 
17.  Aller, L. H. The Atmospheres of the Sun and Stars, 2d ed., Ronald, New 

York, 1963, p. 317. 
 
18.  Unsöld, A. Physik der Sternatmospharen, 2d ed., Springer-Verlag, Berlin,      
           1955, p.302. 
 
19.  Mihalas, D. Stellar Atmospheres, 2d ed.,  W.H.Freeman, San Francisco, 

1978, pp.281-284. 
 
20.  Lindholm, E.  Zur Theorie der Verbreiterung von Spektrallinien, Arkiv. F.     
           Math. Astron. och Fysik 28B (no. 3), 1942, pp. 1 - 11. 
 
 

 396



14 ⋅ Shape of Spectral Lines  
 

 397

  

 
21.  Foley, H.  The Pressure Broadening of Spectral Lines,  Phys. Rev. 69, 1946,  
            pp. 616 - 628. 
 
22.  Holtsmark, J.  Über die Verbreiterung von Spektrallinien,  Ann.der Physik     
         58, 1919, pp. 577 - 630. 
 
23.  Chandrasekhar, S. Stochastic Problems in Physics and Astronomy, Rev. 

Mod. Phy. 15, 1943, pp. 1 - 89. 
 
24.  Griem, H. Spectral Line Broadening by Plasmas,  Academic, New York,       
           1974. 
 
25.  Wrubel, M. Exact Curves of Growth for the Formation of Absorption Lines   

According to the Milne-Eddington Model I. Total Flux,  Ap.J. 109, 1949,  pp. 
66 - 75. 

 
26.  Wrubel, M. Exact Curves of Growth for the Formation of Absorption Lines   
           According to the Milne-Eddington Model II. Center of the Disk,  Ap.J. 111,  
             1950, pp. 157 - 164. 
 
27.  Wrubel, M. Exact Curves of Growth. III. The Schuster- Schwarzschild 

Model, Ap.J. 119, 1954, pp. 51 - 57. 
 
 In addition to the references listed above, an excellent overall reference to 
line broadening theory can be found in:  
 
 Böhm, K.-H.: "Basic Theory of Line Formation", Stellar Atmospheres, (ed.: 
J.Greenstein),  Stars and Stellar Systems: Compendium of Astronomy and 
Astrophysics Vol VI, University of Chicago Press, Chicago, 1960, pp. 88 - 155. 
 
For a somewhat different approach to the problem of line broadening, the interested 
student should consult 
 
 Jefferies, J.T.:Spectral Line Formation, Blaisdell, New York, 1968, pp. 46 - 91. 
 
A more complete treatment than we have given here can be found in 
 
 Mihalas, D.: Stellar Atmospheres, 2d ed., W.H.Freeman, San Francisco, 1978, pp. 
273 - 331. 
 
 Griem, H.R.: Plasma Spectroscopy, McGraw-Hill, New York, 1964. 


