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In Part I, we discussed the internal structure and history of stars with little reference to 
the actual appearance of the stars themselves. Yet virtually all we know of stars rests 
on the information that we receive from their surfaces, and so we need to understand 
those processes that affect the light radiated into space. At several points in the 
evolution of stars, their evolution was determined by the efficiency with which 
radiation could be lost from their atmospheres. Thus, the structure of the atmosphere 
may be expected to play a role in the evolution of the star itself. In addition, for some 
stars, the region which we call the atmosphere represents a substantial fraction of the 
radial extent of the star, so that the surface boundary conditions on the equations of 
stellar structure are set by the atmospheric structure. When this fact is important, the 
very meaning of a stellar radius becomes intertwined with the details of the 
atmospheric structure. With the absence of a clearly defined radius, the notion of an 
effective temperature linked to the stellar luminosity and radius becomes meaningless. 
Thus, the physical situation near the surface of a star must be treated differently from 
that of the interior. This transition zone from the relatively simple physics of the stellar 
interior to the emptiness of interstellar space is commonly known as the stellar 
atmosphere. 
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 There is a tendency to think of the difference between the interior and the 
atmosphere of a star as distinct, as it is with earth. To be sure, the relative extent of the 
solar atmosphere compared to the interior is similar to that of earth, but the similarity 
ends there. There is no sharp interface between stellar atmospheres and interiors as 
commonly exist with planets. There is no material phase change at the interface. 
Indeed, for stars, the distinction between atmospheres and interiors is denoted by the 
failure of certain assumptions used in the study of stellar interiors. 
 
 The solution of the problem posed by the surface layers of a star is similar to 
that for the interior. We have to describe the behavior of the state variables P, T, and ρ 
with position in the star. However, an additional problem is posed by the atmosphere. 
We have to describe the energy distribution of photons as they leave the star, for this 
specifies the appearance of the star which is the fundamental tie with observation. Only 
if this description of the stellar spectrum agrees with that which is observed can we say 
that we have provided a successful description of the star. 
 
 The approach to finding the structure of the atmosphere can be largely divided 
into two parts. First, one determines the flow of radiation through the atmosphere, 
given the structure of the atmosphere. Second, having determined the radiation field 
throughout the surface layers, one corrects the atmospheric structure so that energy is 
conserved at all levels of the atmosphere. Since most of the energy is carried by 
radiation, the second condition usually amounts to the imposition of radiative 
equilibrium throughout the atmosphere. One then uses the improved structure to 
correct the radiation field and repeats the process until a self-consistent model is found. 
To carry out this procedure it is necessary to make some assumptions about the 
conditions that prevail in this transition zone between the interior and the space 
surrounding the star. 
 
9.1   Basic Assumptions for the Stellar Atmosphere 
 
 a   Breakdown of Strict Thermodynamic Equilibrium 
 
  The description of the energy distribution of the photons in the stellar 
interior was made particularly simple by the assumption that all constituents of the gas 
that made up the star were in their most probable macrostate, resulting from random or 
uncorrelated collisions. That is, they were in thermodynamic equilibrium. All aspects 
of such a gas can then be characterized by a single parameter, the temperature, which 
specifies the mean energy of the gas. All other aspects of the distribution function of 
the gas particles are described by the equilibrium distribution function for the 
respective kinds of particles.  
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 The validity of this assumption relied on the fact that various components of 
the gas would undergo randomizing collisions within a volume where the state 
variables (specifically the temperature) could be considered constant. Within the deep 
interior of a star, these conditions are met as well as anywhere in the universe. 
However, any configuration must have a boundary, and it is there that we should 
expect this assumption to fail. Such is the case for stars. However, the manner of that 
failure has a peculiar characteristic in that the particles that make up a star are of two 
distinctly different types. The photons that make up such an important component of 
the gas behave quite differently from the particles that have a material rest mass. These 
photons follow different quantum statistics so that their equilibrium distribution 
functions are different − Bose-Einstein for the photons and generally maxwellian for 
everything else. In addition, the mean free path between collisions for material 
particles is very much less than that for photons. Thus, we would expect that the 
photons would be the first species of particles to be affected by the presence of a 
boundary, and this is indeed the case. As one moves outward through a star, the 
presence of the surface begins to affect the state of the gas when photons first begin to 
escape directly into space and fail to interact any longer with the material particles of 
the gas. Since the probability that a specific photon will escape depends on the atomic 
physics of the opacity corresponding to the photon's energy, we should not expect all 
photons to escape with equal facility. Thus, the photon distribution will depart 
progressively from that of the Planck's law as one approaches the boundary and our 
notion of STE will have broken down. 
 
 The increase in the photon mean free path brought about by the decreasing 
density introduces another problem not unrelated to that posed by the boundary. The 
variation of the state variables over a "typical" photon mean free path will become a 
significant fraction of the value of the variables themselves. Thus, the radiation field at 
any point near the boundary will be made up of photons originating in rather different 
physical environments. Thus, the characteristics of the radiation field will no longer be 
determined by the local values of the state variables, but will depend on the structure 
solution of the entire atmosphere. This global aspect of the properties of the local 
radiation field completely changes the mathematical formalism that describes the flow 
of radiation from that used in the interior. 
 
 b   Assumption of Local Thermodynamic Equilibrium 
 
  It is a happy consequence of the difference between photons and 
particles with material rest mass that the mean free path for photons is generally very 
much greater than that for other particles. Thus, while the photons may sense the 
boundary, there is a substantial region where the material particles do not. The material 
particles continue to undergo collisions with other material particles and photons, the 
majority of which still represent their thermodynamic equilibrium distribution. Thus, 
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the material particles of the gas will continue to behave as if they were in 
thermodynamic equilibrium as one approaches the boundary. Certainly, the point will 
be reached when collisions between material particles and other constituents of the gas 
will become sufficiently infrequent that the nonequilibrium photons of the gas will 
force departures from the Maxwell-Boltzmann energy distribution expected for 
particles in thermodynamic equilibrium. But by this point in the atmosphere (in many 
stars), the majority of the photons will have escaped, much of the stellar spectrum will 
have been established, and the atmospheric structure below this point will be 
determined. Thus, the notion that the distribution function for the material particles 
remains that obtained from the local values of the state variables in thermodynamic 
equilibrium, while the photon distribution does not, is a useful notion. It is called local 
thermodynamic equilibrium (LTE) and it is one of the central assumptions for much of 
the remainder of this book. To understand the physical situation that prevails when 
LTE fails, one must first understand the solution to the problems for which LTE is 
valid. 
 
 The effect of the boundary upon particles that lie within a mean free path of the 
boundary extends to convective blobs. In the stellar interior, we were able to make do 
with the crude mixing-length theory because the differences between the adiabatic 
gradient and that predicted by the mixing-length theory were so small that large errors 
in this difference became rather small errors in the actual gradient. This was due to the 
large size of the mixing length, which implied great efficiency for convective transport. 
This will no longer be the case in the stellar atmosphere, for it is not possible to have a 
mixing length greater than the local distance to the boundary, and that is the order of a 
photon mean free path. Thus, convection, should it even occur in the deeper sections of 
the atmosphere, will be nowhere as efficient as it was in the interior. The mixing-
length theory, while crude, can be used to estimate the impact of convection on the 
atmospheric structure. Fortunately, radiation dominates, by definition, in the outer 
sections of the atmosphere, and so convection will not be a major concern. 
 
 c   Continuum and Spectral Lines 
 
  In describing the spectral energy distribution of the photons emerging 
from a star, it is traditional to distinguish between the smooth distribution of photons 
and the dark interruptions, or lack of photons, called spectral absorption lines. These 
features arise because the opacity of atomic bound-bound transitions is so large 
compared to that of bound-free and free-free processes that photons with energies 
corresponding to those bound-bound transitions do not sense the boundary until they 
are relatively near it. At this point in the atmosphere, the temperature has declined to 
the point where the emitted radiation is less intense than that originating deeper in the 
atmosphere. Thus, there will be fewer photons at the frequencies corresponding to the 
bound-bound transitions, giving rise to the absorption lines of stellar spectra. 
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 Remember that the distinction between continuum and line is largely artificial, 
and often the continuum is shot through with myriads of weak lines. The utility of the 
concept persists, and we are careful to explain exactly what is meant by the distinction. 
Since a large section of this book is be devoted to the processes that give rise to 
spectral lines (and throughout that section we assume that the structure of the 
atmosphere is known), we assume that continuum processes and photons involved in 
those processes are the photons that determine the structure of the atmosphere. 
 
 
 d Additional Assumptions of Normal Stellar Atmospheres 
 
  Although some of the development of the theory of stellar atmospheres 
is presented in great generality, the basic focus of this book is on the theory of 
"normal" stars. This development is appropriate for most of the stars on the main 
sequence and some others. We indicate where the assumptions fail in the description of 
the atmospheres of other stars and what can be done about them, but for now we adopt 
the traditional assumptions of stellar atmospheres. 
 
 In addition to the assumption of LTE, we assume that the thickness of the 
atmosphere is small compared to the radius of the star. Under these conditions, the 
surface geometry may be assumed to be that of a plane- parallel slab of infinite 
thickness possessing a surface extending to infinity in all directions (see Figure 9.1). 
Since most of the stellar mass will reside inside the atmosphere, it is consistent with the 
plane-parallel atmosphere approximation to assume that the surface gravity is constant. 
Thus, the notion of hydrostatic equilibrium given in equation (2.1.6) simplifies to 

                         (9.1.1) 
Furthermore, since no sources of energy are likely to be present in the stellar 
atmosphere and we need not worry about time dependent entropy terms, the 
conservation of energy [equation (7.1.1)] becomes 
 

                 (9.1.2) 
If all the energy is to be carried by radiation, equation (9.1.2) ensures that the radiant 
flux in the atmosphere will be constant. 
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 Figure 9.1 shows the semi-infinite plane that is appropriate for 
describing the local conditions for stars with thin atmospheres.  

 
Thus these are the fundamental assumptions for the theory of normal stellar 
atmospheres: 

1.  LTE prevails. All properties of the material gas can be specified in 
 terms of the local thermodynamic variables. 

2.  The atmospheric structure is affected by the continuum opacity only. 
3.  The local geometry is that of a plane-parallel slab. 
4.  The local surface gravity can be regarded as constant throughout the 

 atmosphere. 
 5. All energy is carried by radiation, and there are no sources of energy  
  within the atmosphere. 
 
Under these conditions, in addition to the chemical composition, only two parameters 
are required to specify the structure of the atmosphere: they are 
 

                         (9.1.3) 
Since R-2 appears in both the expressions for Te and g; it is no longer an independent 
parameter required for specifying the atmospheric structure. This is a result of the  
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plane-parallel approximation and does not represent a fundamental difference between 
the theory of stellar atmospheres and the theory of stellar interiors. If that 
approximation were to be relaxed, R would be required, indicating that the same 
parameters (M, L, and R) are necessary for the specification of the model's structure as 
were required for stellar interiors. 
 
 
9.2   Equation of Radiative Transfer 
 
In this section we describe, with some generality, the flow of radiation through the 
outer layers of the star. We developed the formalism for this in Chapter 1 in the form 
of the Boltzmann transport equation. This formalism basically allows us to describe the 
flow of any ensemble of particles from one point to another as long as we include all 
mechanisms for the "creation" and "destruction" of those particles in phase space. In 
Chapter 1, we used the Boltzmann transport equation to describe the flow of material 
particles and their momentum through an arbitrary medium. Now we consider the 
analogous flow of photons.  
 
 For material particles, three of the phase space coordinates were velocity. But 
such coordinates are clearly inappropriate for photons, so we replaced those 
coordinates with the three components of the photon momentum. This enabled us to 
write equation (1.2.5) in momentum coordinates so that 
 

                  (9.2.1) 
For describing the flow of photons, f represents the density in phase space of photons 
while S describes their creation and destruction at a local point in phase space. 
However, it is traditional to describe the photon phase density in terms of a quantity 
called the specific intensity. 
 
 a   Specific Intensity and Its Relation to the Density of Photons in  

  Phase Space 
 
  The specific intensity is an energy-like quantity that describes the flow 
of energy in a particular direction, through a differential area, into a differential solid 
angle, per unit frequency and time (see Figure 9.2). Remember that the momentum of a 
photon is just its energy divided by the speed of light: 
  

                                             (9.2.2) 
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Figure 9.2 shows the differential parameters defining the specific 
intensity. Since dA is a differential area, the end of the differential 
solid angle dΩ covers it and all photons passing through dA in the 
direction  flow into dΩ. n̂

 
We let the energy carried by photons with momentum p, moving in a directionn̂ , 
passing through a differential area dA, into a differential solid angle dΩ, in a time dt 
and frequency interval dν be dEν(p, ). We can then define the specific intensity as  n̂

                                     (9.2.3) 
 Now the number of photons traveling in a direction    and crossing dA in a 
time dt comes from a physical volume 

n̂

 
dtcdAdV θcos=                                            (9.2.4) 

 
However, the number of photons occupying that volume is just 

                                        (9.2.5) 
For photons in that volume, there is no preferred direction so that the differential 
volume of momentum space is 

                                            (9.2.6) 
[see equation (1.3.6)]. Some of these photons will flow in a direction n , and into the 
differential solid angle dΩ, each carrying energy hν. Therefore, the differential energy 
in our definition of specific intensity becomes 

ˆ
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                                           (9.2.7) 
Combining equations (9.2.2) through (9.2.7), we can relate the specific intensity to the 
phase space density of photons  
 

                (9.2.8) 
 
 

  b   General Equation of Radiative Transfer 
 
 Now let us rewrite equation (9.2.1) in vector form: 
 

                          (9.2.9) 
    
If we assume that the photons are moving under the influence of a strong potential 
gradient ∇Φ, then we can write for photons that 
 

          (9.2.10) 
 
Substitution of equations (9.2.10) and (9.2.8) into equation (9.2.9) yields an extremely 
general form of the equation of radiative transfer: 
 

          (9.2.11) 
 
This equation gives the correct description of the transfer of radiation in an arbitrary 
coordinate system, even if the boundary conditions are changing on a time scale 
comparable to the photon diffusion time. It is even correct if the photons are subject to 
energy loss by virtue of their moving through a strong gravitational field, although 
some care must be exercised in the choice of coordinates. However, if the propagation 
takes place in a dispersive medium, then r&  must be replaced by  

                                  (9.2.12) 
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and the unit of length is changed by n, where n is the index of refraction of the 
medium, as well. 
 
 Fortunately, in normal stellar atmospheres, the radiation field is time-
independent, and the gravitational potential gradient is usually negligible so that 
equation (9.2.11) becomes 

                                      (9.2.13) 
The assumption of plane parallelism will simplify this even further, but first let us turn 
to the "creation" rate S. 
 
 c  "Creation" Rate and the Source Function 
 
  The "creation" rate S is just a measure of the rate at which photons that 
contribute to the flow through dA into dΩ are lost to the volume dVdVp. Any 
absorption process that takes place in that phase space volume will result in the loss of 
a photon. However, photons can be "lost" from the volume without being destroyed. 
Any scattering process that changes the momentum of the photon can remove the 
photon from the volume. Thus, we can write the number lost to the differential volume 
as 

                                      (9.2.14) 
where α is just the fraction of particles present that are lost due to scattering and 
absorption. Particles may also "appear" in the volume or be "created" by thermal 
emission or scattering processes. We assume that the thermal emission processes are 
isotropic so that the number gained in the volume and radiated into a unit solid angle is 

                                           (9.2.15) 
where ε is the thermal emission per unit volume of phase space. 
 
 The situation for scattering is somewhat more complicated. Photons may 
appear in the volume and be scattered by matter in the volume into direction  with 
the appropriate momentum. These photons appear to be created just as surely as the 
thermal photons do, but with a difference. The thermal emission rate depends only on 
the thermodynamic characteristics of the material gas, whereas the scattered photons 
have their origin directly in the radiation field. This dependence of the "creation" rate, 
and hence the specific intensity, on the radiation field itself is one of the hallmarks of 
radiative transfer in stellar atmospheres. It is through the scattering process that the 
local value of the radiation field depends on the values of the radiation field throughout 
the medium. This coupling of the local radiation field to the global radiation field 

n̂
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generates mathematical problems of an entirely different character from those found in 
stellar interiors. 
 
 Definition of the Redistribution Function  For scattering to act as a source of 
photons in the direction and solid angle of interest, the process must take a photon of a 
given momentum and change its direction and momentum to coincide with that of the 
beam (i.e., the direction and frequency of the specific intensity). The processes that can 
do this are characterized by a function known as the redistribution function. This 
function is essentially the probability that a photon with a initial momentum p' coming 
from an initial solid angle Ω' will be scattered into a solid angle Ω with final 
momentum p. We call this probability density function R(p', p, Ω', Ω) the 
redistribution function because it describes how interacting photons will be 
redistributed in momentum and direction. It is normalized so that  

 (9.2.16) 
 The specific nature of the redistribution function depends on the details of the 
physical scattering mechanism and is discussed later. At this point, it is necessary only 
to know that the redistribution function exists and can be calculated for specific 
physical processes. Since the redistribution function has been normalized in 
accordance with equation (9.2.16), it represents the redistribution of a scattered 
photon. To calculate the number of particles gained from scattering, we still must 
include a measure of the fraction entering the volume dVdVp that undergo a scattering. 
Therefore, the number of particles gained from scattering processes is 

 (9.2.17) 
where σ' is simply that fraction. The integrals run over all values of p' and Ω' so that 
photons entering the volume from all possible directions and with all possible values of 
momentum are included. 
 
 "Creation" Rate in Terms of Scattering and Absorption Processes The net 
change of particles in volume dVdVp is obtained by combining equations (9.2.14), 
(9.2.15), and (9.2.17) and replacing the momentum derivatives and photon phase 
densities by equations (9.2.2) and (9.2.8). This process yields 
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(9.2.18) 
Now the "creation" rate S is the number of photons created per unit phase space 
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volume per unit time. But in deriving the transformations from phase density to 
specific intensity given by equations (9.2.8), we did not choose an arbitrary spatial 
volume dV because it had a length cdt. Therefore, to relate the number of particles 
created in an arbitrary phase-space volume dVdVp to S, we must normalize by that 
length so that 

                                       (9.2.19) 
Using this and equation (9.2.18) to express the "creation" rate S in terms of the 
physical processes taking place in the volume, we have  

   (9.2.20) 
where we have introduced the volume emissivity jν, the mass scattering coefficient σν, 
and the mass absorption coefficient κν and replaced R from 

                 (9.2.21) 
 
 Thermal Emission For a gas that is in thermal equilibrium, the relationship 
between the rate of absorption and emission is not arbitrary. This is the first use of 
LTE. Since we are assuming that the gas is in thermal equilibrium with its 
surroundings (LTE), we may invoke Kirchhoff's law for the relationship between the 
thermal emissivity and absorptivity, namely, 

                                           (9.2.22) 
where Bν(T) is the Planck function which depends only on the local temperature.        If 
we use this and equation (9.2.20), the equation of radiative transfer given by equation 
(9.2.13) becomes 

           (9.2.23) 
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Figure 9.3 shows the geometry of a plane-parallel atmosphere. 

 
We may further simplify the equation of radiative transfer by invoking the plane-
parallel approximation so that ∇ becomes  (see Figure 9.3), yielding dxdx /ˆ

 (9.2.24) 
                          
 Optical depth The notion of a dimensionless depth parameter called optical 
depth is central to the study of stellar atmospheres. It is usually taken to increase 
inward as one moves into the star, and it can be viewed physically in the following 
manner. Optical depth of unity is that depth of material wherein (1/e) of the photons 
will be scattered or absorbed while traversing the depth. In terms of the mass 
absorption and scattering coefficients and the differential distance parameter, it is 
defined as  

                                   (9.2.25) 
Making use of the definition of optical depth, we can write the equation of radiative 
transfer for a plane-parallel atmosphere as 
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                       (9.2.26) 
where 

(9.2.27) 
The parameter Sν is known as the source function of the radiation field. Since the 
quantity (κν+σν) appears so frequently, it is customary to call it the mass extinction 
coefficient. The name is reasonable as it is, indeed, a measure of the total ability of 
material to attenuate the flow of photons. 
 
 d   Physical Meaning of the Source Function 
 
  The source function is one of the most important concepts in the theory 
of radiative transfer, and it is important to have a good intuitive feeling for its meaning. 
As the name implies, the source function represents the local contribution to the 
radiation field. It is a measure of the energy contributed to the radiation field by 
physical processes taking place at a particular spot in the atmosphere. Consider the 
case where scattering is unimportant so that σν = 0. Under these conditions the 
expression for the source function [equation (9.2.27)] becomes 

                                       (9.2.28) 
and all photons locally contributed to the radiation field can be characterized by the 
Planck function since they arise from thermal processes. This is a consequence of the 
assumption of LTE which enabled us to use Kirchhoff's law to characterize the local 
emissivity of the gas in terms of its absorptivity. Some authors take this as a definition 
of LTE, but as such, it would be unduly restrictive. The presence of scattering, say by 
electrons will require a more complicated source function such as that given by 
equation (9.2.27), but the excitation and ionization characteristics of the gas may still 
be those expected for a gas in thermodynamic equilibrium. Thus, Sν = Bν is normally a 
sufficient condition for the existence of LTE, but not a necessary one. 
 
 Now consider the case when pure absorption processes are negligible and 
virtually all the opacity of the material arises from scattering processes. Then 
 

              (9.2.29) 
Here the source function depends only on the incident radiation field. Since the 
redistribution function is normalized to unity, the integral in equation (9.2.29) simply 
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represents some sort of average of the local specific intensity over all frequencies and 
angles. The factor of 1/4π then represents that part of the average that is scattered into 
the differential solid angle appropriate for Iν.  
 
 Thus, under the conditions of pure scattering, the source function becomes 
totally independent of the local physical conditions and is completely determined by 
the local radiation field. If this condition were to prevail throughout the atmosphere, 
one would have the curious result that the radiation field would be independent of the 
local values of the state variables (P, T, and ρ) and depend only on the ability of 
particles to scatter photons and the details of how the particles do it. In some real sense, 
the radiation field would become decoupled from the physical properties of the gas. 
Indeed, one can learn little about the physical conditions that prevail in a fog by 
observing the light transmitted through it from say an automobile headlight. This 
independence of the radiation field from the state variables of the gas enables one to 
solve the entire problem of radiative transfer for pure scattering without knowing 
anything about the gas other than the redistribution function. We use this property later 
to discuss methods of solving the equation of radiative transfer. However, as the case 
of the fog illustrates, this is a two edged sword. The decoupling of the radiation field 
from the state variables of the gas, in the case of pure scattering, means that we can not 
use the radiation field to determine the run of state variables with depth. 
 
 e  Special Forms of the Redistribution Function 
 
  Since the redistribution function plays such an important role in 
specifying the nature of scattering in the source function, we examine some common 
physical situations and the corresponding redistribution functions. 
 
 Coherent Scattering The term coherent scattering refers to the case where 
photons are scattered in direction but not in frequency. Thomson scattering by 
electrons is of this form. Such processes are generally known as conservative 
processes because no energy is exchanged between the radiation field and the particles. 
While this is never strictly true, in many cases it is an excellent approximation. This is 
certainly true for the scattering of optical photons by the electrons present in a stellar 
atmosphere. Under these conditions we can write the redistribution function as  

                     (9.2.30) 
 
where δ(ν-ν') is the Dirac delta function. The delta function on frequency causes the 
frequency integral in equation (9.2.27) to collapse, simplifying the source function 
considerably. 
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 Noncoherent Scattering This phrase has come to mean considerably more than 
the opposite of coherent scattering. For fully noncoherent scattering, the frequency of a 
scattered photon is completely uncorrelated with the frequency of the incident photon. 
In some sense, the photon "forgets" its prior frequency. Like coherent scattering, this 
case also represents an approximation. Clearly, if the situation were to apply to the 
entire frequency range from zero to infinity, the value of the redistribution function at 
any specific value of ν would have to be arbitrarily small. Thus, the common use of the 
approximation is confined to a finite frequency range such as a spectral line. As we 
shall see later, very strong spectral lines often possess the property that an electron in 
the upper state is so perturbed by interactions with other particles of the gas that the 
specific value of the absorbed energy is irrelevant in determining the energy of the 
photon that will be emitted in the subsequent transition. Thus, over a finite frequency 
interval, the wavelength of the emitted photon will be totally uncorrelated with the 
wavelength of the absorbed photon. Under these conditions, the frequency simply does 
not appear in the redistribution function and 

                             (9.2.31) 
Redistribution functions of this form are often called complete redistribution functions. 
 
 Isotropic Scattering  As with complete redistribution, the photon undergoing 
isotropic scattering suffers from "amnesia". The direction of the scattered photon is 
completely uncorrelated with the direction of the incident photon. Thus, the angular 
dependence of the redistribution function vanishes and 

                                   (9.2.32) 
This also considerably simplifies the source function in equation (9.2.27). If the 
radiation field were isotropic, the integral over the solid angle merely produces a factor 
of 4π, which cancels the corresponding factor in front of the integral. In general, this is 
also an approximation. Although it is far from obvious, we shall see that it is an 
excellent approximation for electron scattering of optical photons in a stellar 
atmosphere. So great is the simplification introduced by the assumption of isotropic 
scattering that there is a tendency to invoke it even when it is totally inappropriate. 
Later, we shall see what sorts of methods can be used to incorporate the full 
redistribution function in the solution of the equation of radiative transfer. Such cases 
are often called partially coherent anisotropic scattering, and their solution poses one 
of the most difficult problems in radiative transfer. However, before we consider these 
formidable problems, we must understand how to approach the solution of more basic 
problems. The dominant form of scattering in normal stellar atmospheres is Thomson 
scattering by electrons, and for purposes of determining the atmospheric structure it is 
an excellent approximation to assume that such scattering is isotropic. Under the 
assumption of coherent isotropic scattering, the source function given by equation 
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(9.2.27) becomes 

               (9.2.33) 
 
9.3  Moments of the Radiation Field 
 
In Chapter 1 we saw that a good deal of information was gleaned and simplification 
achieved by taking moments of the phase density of the particles that made up the gas 
in question. By such methods we were able to obtain equations for the continuity of 
matter and momentum and eventually to develop expressions for the hydrodynamic 
flow of a gas and hydrostatic equilibrium. The basic approach was to throw away 
information contained in the phase density by averaging it over some appropriate part 
of the phase space volume. That part of the volume was generally taken to be described 
by coordinates for which we did not require specific knowledge of the phase density. 
Since we were to invoke STE for the gas, we knew that the details of the velocity 
distribution could be ignored since in thermodynamic systems the velocity 
distributions are specified by a single parameter (the temperature) which is related to 
the mean velocity. Thus, averaging the phase density over velocity or momentum 
space made good sense. 
 
 We may expect the same sort of benefits by taking moments of the radiation 
field and particularly the specific intensity, for there is a simple relation [equation 
(9.2.8)] between the specific intensity and the phase density of photons. However, here 
we must be careful because it is the momentum distribution of photons in which we are 
interested so that averaging over momentum space would remove the very information 
we seek. We must look to other coordinates of phase space to find those which can be 
considered unimportant.  
 
 One of our initial assumptions is the atmosphere is well approximated by a 
plane-parallel slab. By symmetry, the radiation flow through such a slab will be 
isotropic about the normal to the slab. Hence, no important information will be 
contained in the azimuthal coordinate (see Figure 9.3). In addition, we might expect 
that information in the polar angle θ  will not play a central role in the interaction of the 
radiation field with matter. It is this interaction that determines the emergent spectrum 
and the atmospheric structure. For these reasons, we can expect that the angular 
coordinates of phase space may prove expendable and that averages of the radiation 
field over these coordinates could prove useful in describing the flow of radiation 
through the atmosphere. Thus, we shall average over two of the three spatial 
coordinates, choosing the third to represent the direction of net energy flow. In the case 
of the plane-parallel atmosphere, this clearly is the direction of the atmosphere normal. 
Also, because of the simple transformation between the specific intensity and the 
photon phase density, the quantity to be averaged should be the specific intensity itself. 
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In addition, the higher-order moments should involve the spatial coordinates just as the 
higher moments in Chapter 1 involved the velocity itself. Such angular moments will 
then describe various aspects of the net flow of energy. 
 
 a   Mean Intensity 
 
  Averaging over the angular coordinates described in Figure 9.3 is 
equivalent to averaging over all solid angles, so with some generality we can define the 
lowest-order moment of the radiation field as 
 

          (9.3.1) 
For a plane-parallel atmosphere, where the intensity has no φ dependence and cosθ is 
replaced by µ, equation (9.3.1) is equivalent to 

                                  (9.3.2) 
This quantity, known as the mean intensity, is analogous to the particle density of 
Chapter 1 and differs from the photon energy density by a factor of 4π/c. 
 
 b   Flux 
 
  The next-highest-order moment is related to the net flow of energy in a 
specific direction , and it is defined, in a manner analogous to that for the mean 
intensity J

n̂
ν, as follows: 

            (9.3.3) 
If we break   into its components, then for the axis-symmetric case of a plane parallel 
atmosphere, this becomes 

n̂

 

                                (9.3.4) 
where  points along the normal to the atmosphere. Indeed, it is fair to describe the 
flux as an intensity-weighted unit vector pointing in the direction of the flow of energy. 
Although the flux as defined here is a vector quantity, it is common to drop the vector 
properties since they are generally obvious from the geometry of the atmosphere. 
However, the vector nature does point to the similarity with the moments of defined in 

n̂
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Chapter 1 where the first moment of the phase density was the mean flow velocity. 
This definition of the first moment of the radiation field is sometimes known as the 
Harvard flux because it is heavily employed by the ATLAS atmosphere computer code 
developed at Harvard University, where the analogy to the mean intensity was deemed 
more important than the physical interpretation. 
 

The actual energy crossing a differential area dA in the direction n  is ˆ 

            (9.3.5) 
The quantity Fν is often called the physical flux because it represents the actual flow of 
energy. For a plane-parallel atmosphere this reduces to 
 

                         (9.3.6) 
The quantity π appears so regularly that many early authors, who were primarily 
concerned with plane-parallel atmospheres, defined a third form of the flux as  
 

               (9.3.7) 
This has become known as the radiative flux and it neither represents a physical 
quantity directly nor is analogous to the mean intensity. However, it is the most widely 
used definition of the first moment of the radiation field, so the student is to be warned 
to determine which definition of the flux a particular author is using or else all sorts of 
confusion may result. Throughout this book, we use all three definitions, but we try to 
be quite clear as to which is which and why a specific choice is made. 
 
 c   Radiation Pressure 
 
  The analogy between this moment and the pressure tensor in Chapter 1 
is very close, and the formal definition has the same normalization properties as Jν. So 

 (9.3.8) 
 
In a manner similar to the physical flux Fν, Kν can be regarded as an intensity-
weighted unit dyadic (not to be confused with the unit tensor 1 that has components 
δij). Now Kν is known as the radiation pressure tensor and is completely analogous to 
the pressure tensor P that we obtained in Chapter 1 [equation (1.2.25)]. The meaning of 
the unit dyadic (in this case the vector outer product of a unit vector with itself) can be 
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seen by writing out the various Cartesian components of  Kν in spherical coordinates: 

φθθτ×
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 (9.39) 

 
For the axis-symmetric case this becomes 

            (9.3.10) 
or 

     (9.3.11) 
 Now consider the case where the radiation field is nearly isotropic so that we 
may expand Iν(τν , µ) in a rapidly converging series as  

                               (9.3.12) 
where the lead term I0(τν) is the dominant term. The components of the radiation 
pressure tensor then become 

                  (9.3.13) 
                        
Define the scalar moment Kν(τν) so that 

                    (9.3.14) 
The identity of this moment to the magnitude of the radiation pressure tensor in the 
case of near isotropy ensures that 
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                                     (9.3.15) 
The isotropy condition was required in Chapter 1 in order for the divergence of the 
pressure tensor to be replaced by the gradient of the scalar pressure. Thus, in every 
sense of the word Kν(τν)  may be considered to be related to the pressure of radiation. 
There remains only the problem of units. Since P represents the transfer of momentum 
across a surface, the exact relationship is   

                        (9.3.16) 
 Although these expressions give the correct formulation of the radiation pressure in 
terms of moments of the radiation field, it is important to remember that the radiation 
pressure is not identical to the force per unit area exerted by photons. That will involve 
the opacity, for to exert a force the photon must interact with the matter. In the stellar 
interior, this was no problem because the mean free path was so short as to guarantee 
that all photons would interact in a short distance. However, in a stellar atmosphere, 
this is no longer true for some of the photons escape. We return to this point when we 
consider the forces acting on the gas. 
 
9.4   Moments of the Equation of Radiative Transfer 
 
 In Chapter 1 we saw that much useful information could be obtained about the 
gas by taking moments of the Boltzmann transport equation. The process always 
generated moments of phase density that were of one order higher than that used to 
generate the equation itself. Thus, to be useful, a relation between the higher-order 
moment and one of lower order had to be found. If this could be done, a self-consistent 
set of moment equations could be found and solved, yielding the values of those 
moments throughout the configuration. A similar set of circumstances will exist for the 
equation of radiative transfer.  
 
 To maintain a high level of generality, let us consider the general equation of 
radiative transfer given by equation (9.2.11) but with the "creation rate" replaced by 
the source function and the potential gradient taken to be zero. Thus 

                   (9.4.1) 
Furthermore, assume that the scattering is isotropic and coherent so that the source 
function in equation (9.2.27) becomes 

                                (9.4.2) 
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Now we integrate equation (9.4.1) over all solid angles, using the form of the source 
function given by equation (9.4.2), and get 

                         (9.4.3) 
This is the equation of radiative equilibrium and describes how the radiative flux flows 
through the atmosphere. Note that the effects of scattering have disappeared from this 
equation. This is an expression of the conservative nature of scattering. Since no 
energy is gained or lost in each individual scattering event, the average can contribute 
nothing to the energy balance for the radiative flux and so all scattering terms must 
vanish. 
 
 a   Radiative Equilibrium and Zeroth Moment of the Equation of        

 Radiative Transfer 
 
  Consider the right-hand side of equation (9.4.3). This is essentially the 
right-hand side of the Boltzmann transport equation, which denotes the creation and 
destruction of particles in phase space, suitably averaged over direction. Thus, if there 
is no net production of photons in the atmosphere, this term, integrated over frequency, 
must be zero. Therefore, integrating equation (9.4.3) over all frequencies, we get 

    (9.4.4) 
This is a very general statement of radiative equilibrium, and either side of this 
equation is an equivalent statement of it. If we let , then for a static plane-

parallel atmosphere  
∫
∞

=
0

dvFF ν

                (9.4.5) 
This will serve as a definition of the local effective temperature Te. 
 
 
 b   First Moment of the Equation of Radiative Transfer and the  

  Diffusion Approximation 
 
  We multiply equation (9.4.1) [with the source function of equation 
(9.4.2) replacing the "creation rate"] by a unit vector n  pointing in the direction of 
flow of radiant energy and integrate over all solid angles to obtain 

ˆ

                      (9.4.6) 
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   Now we make the approximation of near isotropy for the radiation field that was 
done in equation (9.3.12) and evaluate Jν(τν) from its definition [equation (9.3.1)] to 
get  

                                (9.4.7) 
We have already shown that under similar assumptions Kν(τν) = I0/3, so for conditions 
of near isotropy 

                                                 (9.4.8) 
 
 This is known as the diffusion approximation and it can be used to close the 
moment equation (9.4.6), yielding 

                       (9.4.9) 
Now equations (9.4.3) and (9.4.9) can be combined, by utilizing radiative equilibrium 
[equation (9.4.4)], to produce a "wave equation" for the radiative flux F 

            (9.4.10) 
which has all the properties of the usual wave equation. Such an equation is useful in 
solving problems in radiative transfer when the boundary conditions change on a time 
scale comparable to the photon diffusion time through the medium. Such situations 
may occur in some nebulae, novae and supernovae, or possibly quasars. For stellar 
atmospheres, the time-independent solutions will generally be sufficient. For a plane-
parallel atmosphere in which the radiation field can be viewed as static, equations 
(9.4.3) and (9.4.9) become, respectively, 

          (9.4.11) 
 
That the static equations will be appropriate for normal stellar atmospheres becomes 
apparent when we consider that the diffusion time for a photon through a stellar 
atmosphere is only a few orders of magnitude times the light travel time. An 
atmosphere is a place from which photons escape after perhaps a few dozen 
interactions. Normal stars do not change on so short a time scale. 
 
 c   Eddington Approximation 
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solution of the problem. The moment equations are, after all, differential equations and 
are subject to boundary conditions. Specification of these boundary conditions will 
provide a complete and unique solution for the radiation field. Sir Arthur Stanley 
Eddington suggested an additional approximation, inspired by the diffusion 
approximation that allows for the sufficient specification of boundary conditions to 
permit the solution of equations (9.4.11). 
 
 We consider the situation at the surface, and we assume the emergent radiation 
field to be isotropic. Since there is generally no incident radiation at the surface of a 
star, and using the condition of near isotropy given by equation (9.3.12) we get 

           (9.4.12) 
    Hence, 
 

                                     (9.4.13) 
This and the condition of radiative equilibrium given by equation (9.4.4) provide the 
two additional constraints necessary to solve equations (9.4.11). For the case of the 
gray atmosphere (see Section 10.2) a particularly simple solution is given by equation 
(10.2.15). Although the emergent radiation field is only approximately isotropic, it is 
the genius of this approximation that the errors introduced by the surface 
approximation are somewhat offset by the errors incurred by the assumption of the 
diffusion approximation. Thus, as we shall see later, the Eddington approximation 
produces solutions for the radiation field that are usually accurate to about 10 percent. 
As a result, the Eddington approximation is frequently used to solve problems in 
radiative transfer. To do better, we shall have to do a great deal more. 
 
 We have seen that it is possible to describe the flow of radiation through a 
stellar atmosphere. The derivation involves the same formalisms that we developed in 
Chapter 1 to describe the flow of matter. The resulting description of this flow is 
known as the equation of radiative transfer and it differs significantly from the simple 
result developed for the study of stellar interiors. The differences point up one of the 
central differences between stellar interiors and stellar atmospheres. Deep inside a star, 
the structure of the gas and radiation field is fully determined by the local values of the 
state variables of the gas. This is not the case in the stellar atmosphere. At any given 
point in the atmosphere, the local radiation field is composed of photons which 
originated in an environment that differed significantly from the local environment. 
Thus, the solution for the equation of radiative transfer locally will depend on the 
solution everywhere. This global nature of radiative transfer in a stellar atmosphere is 
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one of the central differences between the interior and the outer layers of a star. We 
now turn our attention to solving the equation of radiative transfer. 
 
Problems 
 

1. Show that the specific intensity along a ray in empty space is constant. 
 

2. Compute the specific intensity and the radiative flux at a distance r on the axis 
of an emitting disk having radius ρ and temperature Te. Assume the disk to be 
located at r = 0. 

 
3. Derive the equation of radiative transfer that is appropriate for spherical 

geometry. List carefully all the assumptions that you make. 
 

4. Derive the plane-parallel equation of radiative transfer appropriate for a 
dispersive medium with an index of refraction n which is different from unity 
and which may vary with position. 

 
5. Show that for any diagonal tensor A, in spherical coordinates, 

 
 
   6. Use the above equation to show that if K is a diagonal tensor with all elements 
 equal to K, then 

 
Here K, J, and K have their usual meanings for radiative transfer [see equations (9.3.1), 
(9.3.8), and (9.3.14)]. 
 

7. Derive equation (9.2.11) from equations (9.2.8) through (9.2.10). Show all 
your work. 

 
8. Derive equation (9.2.18) from equations (9.2.2), (9.2.8), (9.2.14), (9.2.15), 

(9.2.17). Show all your work. 
 

9. Derive equation (9.4.10) from first principles and axioms. Clearly list all 
assumptions that you make. 
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Supplemental Reading 
 
 A number of books provide an excellent description of the processes taking 
place in a stellar atmosphere. For excellent, clear, and correct definitions of the 
quantities that appear in the theory of radiative transfer see 
 

 Mihalas, D.: Stellar Atmospheres, 2d ed. W.H. Freeman, San Francisco, 1978, Chap. 
1, pp. 1-18. 

 
Strong insight into problems posed by scattering can be found in 
 

 Sobolev, V.V.: A Treatise on Radiative Transfer, (Trans.: S. I. Gaposchkin), D.Van 
Nostrand, Princeton N.J., 1963 Chap. 1, pp. 1 - 37. 

 
An excellent overall statement of the problem can be found in  
 

 Mustel, E.R.: Theoretical Astrophysics, (Ed.: V.A. Ambartsumyan, trans. J.B. 
Sykes), Pergamon, New York, 1958, pp. 1-8. 

 
To have some feeling for just how long people have been worrying about problems 
like these and to sample the physical insight of one of the most insightful men of the 
twentieth century, read 
 

 Eddington, A.S.: On the Radiative Equilibrium of the Stars, Mon. Not. R. astr. Soc., 
77, 1916, pp. 16 - 35. 

 


