
 
 
 
 
 
 

 Fundamental Numerical  
 
 Methods and Data Analysis 
 
  
 by 
 
 George W. Collins, II 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
© George W. Collins, II    2003 



 
 i

 Table of Contents 
 
List of Figures .....................................................................................................................................vi 
 
List of Tables.......................................................................................................................................ix 
 
Preface .............................................................................................................................. xi 
  Notes to the Internet Edition ....................................................................................xiv 
 
1.  Introduction and Fundamental Concepts..........................................................................   1 
 
 1.1 Basic Properties of Sets and Groups..........................................................................   3 
  
 1.2  Scalars, Vectors, and Matrices...................................................................................   5 
  
 1.3 Coordinate Systems and Coordinate Transformations..............................................   8 
  
 1.4  Tensors and Transformations....................................................................................  13 
 
 1.5  Operators ...................................................................................................................  18 
 
 Chapter 1 Exercises ...............................................................................................................  22 
 
 Chapter 1 References and Additional Reading.....................................................................  23 
 
2.  The Numerical Methods for Linear Equations and Matrices........................................  25 
 
 2.1 Errors and Their Propagation....................................................................................  26 
  
 2.2 Direct Methods for the Solution of Linear Algebraic Equations.............................  28 
  a. Solution by Cramer's Rule............................................................................  28 
  b. Solution by Gaussian Elimination................................................................  30 
  c. Solution by Gauss Jordan Elimination.........................................................  31 
  d. Solution by Matrix Factorization: The Crout Method.................................  34 
  e. The Solution of Tri-diagonal Systems of Linear Equations........................  37 
  
 2.3 Solution of Linear Equations by Iterative Methods .................................................  38 
  a. Solution by The Gauss and Gauss-Seidel Iteration Methods ......................  38 
  b. The Method of Hotelling and Bodewig  .....................................................  41 
  c. Relaxation Methods for the Solution of Linear Equations..........................  44 
  d. Convergence and Fixed-point Iteration Theory...........................................  46 
  
 2.4 The Similarity Transformations and the Eigenvalues and Vectors of a 

Matrix ........................................................................................................................  47 

i



 
 ii

  
 Chapter 2 Exercises ...............................................................................................................  52 
 
 Chapter 2 References and Supplemental Reading................................................................  53 
 
 
3.  Polynomial Approximation, Interpolation, and Orthogonal Polynomials ...................  55 
 
 3.1 Polynomials and Their Roots....................................................................................  56 
  a. Some Constraints on the Roots of Polynomials...........................................  57 
  b. Synthetic Division.........................................................................................  58 
  c. The Graffe Root-Squaring Process ..............................................................  60 
  d. Iterative Methods ..........................................................................................  61 
  
 3.2 Curve Fitting and Interpolation.................................................................................  64 
  a. Lagrange Interpolation .................................................................................  65 
  b. Hermite Interpolation....................................................................................  72 
  c. Splines ...........................................................................................................  75 
  d. Extrapolation and Interpolation Criteria ......................................................  79 
  
 3.3 Orthogonal Polynomials ...........................................................................................  85 
  a. The Legendre Polynomials...........................................................................  87 
  b. The Laguerre Polynomials ...........................................................................  88 
  c. The Hermite Polynomials.............................................................................  89 
  d. Additional Orthogonal Polynomials ............................................................  90 
  e. The Orthogonality of the Trigonometric Functions.....................................  92 
  
 Chapter 3 Exercises ................................................................................................................93 
 
 Chapter 3 References and Supplemental Reading.................................................................95 
 
4. Numerical Evaluation of Derivatives and Integrals .........................................................97 
 
 4.1 Numerical Differentiation ..........................................................................................98 
  a. Classical Difference Formulae ......................................................................98 
  b. Richardson Extrapolation for Derivatives...................................................100 
  
 4.2 Numerical Evaluation of Integrals: Quadrature ......................................................102 
  a. The Trapezoid Rule .....................................................................................102 
  b. Simpson's Rule.............................................................................................103 
  c. Quadrature Schemes for Arbitrarily Spaced Functions..............................105 
  d. Gaussian Quadrature Schemes ....................................................................107 
  e. Romberg Quadrature and Richardson Extrapolation..................................111 
  f. Multiple Integrals.........................................................................................113 

ii



 
 iii

  
 4.3 Monte Carlo Integration Schemes and Other Tricks...............................................115 
  a. Monte Carlo Evaluation of Integrals...........................................................115 
  b. The General Application of Quadrature Formulae to Integrals .................117 
 
 Chapter 4 Exercises .............................................................................................................119 
 
 Chapter 4 References and Supplemental Reading...............................................................120 
 
 
5. Numerical Solution of Differential and Integral Equations ..........................................121 
 
 5.1 The Numerical Integration of Differential Equations .............................................122 
  a. One Step Methods of the Numerical Solution of Differential 

Equations......................................................................................................123 
  b. Error Estimate and Step Size Control .........................................................131 
  c. Multi-Step and Predictor-Corrector Methods .............................................134 
  d. Systems of Differential Equations and Boundary Value 

Problems.......................................................................................................138 
  e. Partial Differential Equations ......................................................................146 
  
 5.2 The Numerical Solution of Integral Equations........................................................147 
  a. Types of Linear Integral Equations.............................................................148 
  b. The Numerical Solution of Fredholm Equations........................................148 
  c. The Numerical Solution of Volterra Equations ..........................................150 
  d. The Influence of the Kernel on the Solution...............................................154 
 
 Chapter 5 Exercises ..............................................................................................................156 
 
            Chapter 5  References and Supplemental Reading ..............................................................158 
 
 
6.  Least Squares, Fourier Analysis, and Related Approximation Norms .......................159 
  
 6.1 Legendre's Principle of Least Squares.....................................................................160 
  a. The Normal Equations of Least Squares.....................................................161 
  b. Linear Least Squares....................................................................................162 
  c. The Legendre Approximation .....................................................................164 
  
 6.2 Least Squares, Fourier Series, and Fourier Transforms..........................................165 
  a. Least Squares, the Legendre Approximation, and Fourier Series..............165 
  b. The Fourier Integral .....................................................................................166 
  c. The Fourier Transform ................................................................................167 
  d. The Fast Fourier Transform Algorithm ......................................................169 

iii



 
 i

   
 6.3 Error Analysis for Linear Least-Squares .................................................................176 
  a. Errors of the Least Square Coefficients ......................................................176 
  b. The Relation of the Weighted Mean Square Observational Error 

to the Weighted Mean Square Residual......................................................178 
  c. Determining the Weighted Mean Square Residual ....................................179 
  d. The Effects of Errors in the Independent Variable .....................................181 
  
 6.4 Non-linear Least Squares .........................................................................................182 
  a. The Method of Steepest Descent.................................................................183 
  b. Linear approximation of f(aj,x) ...................................................................184 
  c. Errors of the Least Squares Coefficients.....................................................186 
  
 6.5 Other Approximation Norms ...................................................................................187 
  a. The Chebyschev Norm and Polynomial Approximation ...........................188 
  b. The Chebyschev Norm, Linear Programming, and the Simplex 

Method .........................................................................................................189 
  c. The Chebyschev Norm and Least Squares .................................................190 
 
 Chapter 6 Exercises ..............................................................................................................192 
 
 Chapter 6 References and Supplementary Reading.............................................................194 
 
 
7. Probability Theory and Statistics .....................................................................................197 
 
 7.1 Basic Aspects of Probability Theory .......................................................................200 
  a. The Probability of Combinations of Events................................................201 
  b. Probabilities and Random Variables...........................................................202 
  c. Distributions of Random Variables.............................................................203 
  
 7.2 Common Distribution Functions .............................................................................204 
  a. Permutations and Combinations..................................................................204 
  b. The Binomial Probability Distribution........................................................205 
  c. The Poisson Distribution .............................................................................206 
  d. The Normal Curve .......................................................................................207 
  e. Some Distribution Functions of the Physical World ..................................210 
 
 7.3 Moments of Distribution Functions.........................................................................211 
  
 7.4 The Foundations of Statistical Analysis ..................................................................217 
  a. Moments of the Binomial Distribution .......................................................218 
  b. Multiple Variables, Variance, and Covariance...........................................219 
  c. Maximum Likelihood..................................................................................221 

iv



 
 

  
 Chapter 7  Exercises .............................................................................................................223 
 
 Chapter 7 References and Supplemental Reading...............................................................224 
 
 
8. Sampling Distributions of Moments, Statistical Tests, and Procedures ......................225 
  
 8.1 The t, χ2 , and F Statistical Distribution Functions..................................................226 
  a. The t-Density Distribution Function ...........................................................226 
  b. The χ2 -Density Distribution Function ........................................................227 
  c. The F-Density Distribution Function ..........................................................229 
  
 8.2 The Level of Significance and Statistical Tests ......................................................231 
  a. The "Students" t-Test...................................................................................232 
  b. The χ2-test ....................................................................................................233 
  c. The F-test .....................................................................................................234 
  d. Kolmogorov-Smirnov Tests ........................................................................235 
  
 8.3 Linear Regression, and Correlation Analysis..........................................................237 
  a. The Separation of Variances and the Two-Variable Correlation 

Coefficient....................................................................................................238 
  b. The Meaning and Significance of the Correlation Coefficient ..................240 
  c. Correlations of Many Variables and Linear Regression ............................242 
  d Analysis of Variance....................................................................................243 
  
 8.4 The Design of Experiments .....................................................................................246 
  a. The Terminology of Experiment Design ....................................................249 
  b. Blocked Designs ..........................................................................................250 
  c. Factorial Designs .........................................................................................252 
 
 Chapter 8    Exercises ...........................................................................................................255 
 
 Chapter 8    References and Supplemental Reading .............................................................257 
 
 Index......................................................................................................................................259 
 

v



 
 i

  List of Figures 
  
Figure 1.1 shows two coordinate frames related by the transformation angles φij. Four 

coordinates are necessary if the frames are not orthogonal..................................................  11 
 
Figure 1.2 shows two neighboring points P and Q in two adjacent coordinate systems 

X and X' The differential distance between the two is xdr . The vectorial 
distance to the two points is )P(X

r
 or )P('X

r
 and )Q(X

r
  or )Q('X

r
respectively..................  15 

 
Figure 1.3 schematically shows the divergence of a vector field. In the region where 

the arrows of the vector field converge, the divergence is positive, implying an 
increase in the source of the vector field. The opposite is true for the region 
where the field vectors diverge. ............................................................................................  19 

 
Figure 1.4 schematically shows the curl of a vector field. The direction of the curl is 

determined by the "right hand rule" while the magnitude depends on the rate of 
change of the x- and y-components of the vector field with respect to y and x. .................  19 

 
Figure 1.5 schematically shows the gradient of the scalar dot-density in the form of a 

number of vectors at randomly chosen points in the scalar field. The direction of 
the gradient points in the direction of maximum increase of the dot-density, 
while the magnitude of the vector indicates the rate of change of that density. . ................  20 

 
Figure 3.1 depicts a typical polynomial with real roots. Construct the tangent to the 

curve at the point xk and extend this tangent to the x-axis. The crossing point 
xk+1 represents an improved value for the root in the Newton-Raphson 
algorithm. The point xk-1 can be used to construct a secant providing a second 
method for finding an improved value of x. .........................................................................  62 

 
Figure 3.2 shows the behavior of the data from table 3.1. The results of various forms 

of interpolation are shown. The approximating polynomials for the linear and 
parabolic Lagrangian interpolation are specifically displayed. The specific 
results for cubic Lagrangian interpolation, weighted Lagrangian interpolation 
and interpolation by rational first degree polynomials are also indicated. .........................  69 

 
Figure 4.1 shows a function whose integral from a to b is being evaluated by the 

trapezoid rule. In each interval ∆xi the function is approximated by a straight 
line.........................................................................................................................................103 

 
Figure 4.2 shows the variation of a particularly complicated integrand. Clearly it is not 

a polynomial and so could not be evaluated easily using standard quadrature 
formulae. However, we may use Monte Carlo methods to determine the ratio 
area under the curve compared to the area of the rectangle. ...............................................117 

vi



 
 ii

  
Figure 5.1 show the solution space for the differential equation y' = g(x,y). Since the 

initial value is different for different solutions, the space surrounding the 
solution of choice can be viewed as being full of alternate solutions. The two 
dimensional Taylor expansion of the Runge-Kutta method explores this solution 
space to obtain a higher order value for the specific solution in just one step....................127 

 
Figure 5.2 shows the instability of a simple predictor scheme that systematically 

underestimates the solution leading to a cumulative build up of truncation error..............135 
 
Figure 6.1 compares the discrete Fourier transform of the function e-│x│ with the 

continuous transform for the full infinite interval. The oscillatory nature of the 
discrete transform largely results from the small number of points used to 
represent the function and the truncation of the function at t = ±2. The only 
points in the discrete transform that are even defined are denoted by ...............................173 

 
Figure 6.2 shows the parameter space defined by the φj(x)'s. Each f(aj,xi) can be 

represented as a linear combination of the φj(xi) where the aj are the coefficients 
of the basis functions. Since the observed variables Yi cannot be expressed in 
terms of the φj(xi), they lie out of the space. ........................................................................180 

 
Figure 6.3 shows the χ2 hypersurface defined on the aj space. The non-linear least 

square seeks the minimum regions of that hypersurface. The gradient method 
moves the iteration in the direction of steepest decent based on local values of 
the derivative, while surface fitting tries to locally approximate the function in 
some simple way and determines the local analytic minimum as the next guess 
for the solution. .....................................................................................................................184 

 
Figure 6.4 shows the Chebyschev fit to a finite set of data points. In panel a the fit is 

with a constant a0 while in panel b the fit is with a straight line of the form     
f(x) = a1 x + a0. In both cases, the adjustment of the parameters of the function 
can only produce n+2 maximum errors for the (n+1) free parameters. ..............................188 

 
Figure 6.5 shows the parameter space for fitting three points with a straight line under 

the Chebyschev norm. The equations of condition denote half-planes which 
satisfy the constraint for one particular point.......................................................................189 

 
Figure 7.1 shows a sample space giving rise to events E and F. In the case of the die, E 

is the probability of the result being less than three and F is the probability of 
the result being even. The intersection of circle E with circle F represents the 
probability of E and F [i.e. P(EF)]. The union of circles E and F represents the 
probability of E or F. If we were to simply sum the area of circle E and that of  
F we would double count the intersection. ..........................................................................202 

 

vii



 
 iii

  
Figure 7.2 shows the normal curve approximation to the binomial probability 

distribution function. We have chosen the coin tosses so that p = 0.5. Here µ 
and σ can be seen as the most likely value of the random variable x and the 
'width' of the curve respectively. The tail end of the curve represents the region 
approximated by the Poisson distribution............................................................................209 

 
Figure 7.3 shows the mean of a function f(x) as <x>. Note this is not the same as the 

most likely value of x as was the case in figure 7.2. However, in some real 
sense σ is still a measure of the width of the function. The skewness is a 
measure of the asymmetry of f(x) while the kurtosis represents the degree to 
which the f(x) is 'flattened' with respect to a normal curve. We have also 
marked the location of the values for the upper and lower quartiles, median and 
mode......................................................................................................................................214 

 
Figure 8.1 shows a comparison between the normal curve and the t-distribution 

function for N = 8. The symmetric nature of the t-distribution means that the 
mean, median, mode, and skewness will all be zero while the variance and 
kurtosis will be slightly larger than their normal counterparts. As N → ∞, the    
t-distribution approaches the normal curve with unit variance. ..........................................227 

 
Figure 8.2 compares the χ2-distribution with the normal curve. For N=10 the curve is 

quite skewed near the origin with the mean occurring past the mode (χ2 = 8). 
The Normal curve has µ = 8 and σ2 = 20. For large N, the mode of the             
χ2-distribution approaches half the variance and the distribution function 
approaches a normal curve with the mean equal the mode. ................................................228 

 
Figure 8.3 shows the probability density distribution function for the F-statistic with 

values of N1 = 3 and N2 = 5 respectively. Also plotted are the limiting 
distribution functions f(χ2/N1) and f(t2). The first of these is obtained from f(F) 
in the limit of N2 → ∞. The second arises when N1 ≥ 1. One can see the tail of 
the f(t2) distribution approaching that of f(F) as the value of the independent 
variable increases. Finally, the normal curve which all distributions approach 
for large values of N is shown with a mean equal to F 
 and a variance equal to the variance for f(F).........................................................................230 

 
Figure 8.4 shows a histogram of the sampled points xi and the cumulative probability 

of obtaining those points. The Kolmogorov-Smirnov tests compare that 
probability with another known cumulative probability and ascertain the odds 
that the differences occurred by chance. ..............................................................................237 

 
Figure 8.5 shows the regression lines for the two cases where the variable X2 is 

regarded as the dependent variable (panel a) and the variable X1 is regarded as 
the dependent variable (panel b). ........................................................................................240 

viii



 
 i

   
List of Tables 

 
Table 2.1 Convergence of Gauss and Gauss-Seidel Iteration Schemes...................................  40 
 
Table 2.2 Sample Iterative Solution for the Relaxation Method..............................................  45 
 
Table 3.1 Sample Data and Results for Lagrangian Interpolation Formulae ..........................  67 
 
Table 3.2 Parameters for the Polynomials Generated by Neville's Algorithm........................  71 
 
Table 3.3 A Comparison of Different Types of Interpolation Formulae.................................  79 
 
Table 3.4 Parameters for Quotient Polynomial Interpolation ..................................................  83 
 
Table 3.5 The First Five Members of the Common Orthogonal Polynomials ........................  90 
 
Table 3.6 Classical Orthogonal Polynomials of the Finite Interval .........................................  91 
 
Table 4.1 A Typical Finite Difference Table for f(x) = x2 ........................................................99 
 
Table 4.2 Types of Polynomials for Gaussian Quadrature .....................................................110 
 
Table 4.3 Sample Results for Romberg Quadrature................................................................112 
 
Table 4.4 Test Results for Various Quadrature Formulae.......................................................113 
 
Table 5.1 Results for Picard's Method .....................................................................................125 
 
Table 5.2 Sample Runge-Kutta Solutions................................................................................130 
 
Table 5.3 Solutions of a Sample Boundary Value Problem for Various Orders of 

Approximation .........................................................................................................145 
 
Table 5.4 Solutions of a Sample Boundary Value Problem Treated as an Initial 

Value Problem..........................................................................................................145 
 
Table 5.5 Sample Solutions for a Type 2 Volterra Equation ..................................................152 
 
Table 6.1 Summary Results for a Sample Discrete Fourier Transform..................................172 
 
Table 6.2 Calculations for a Sample Fast Fourier Transform .................................................175 
 
Table 7.1 Grade Distribution for Sample Test Results............................................................216 

ix



 
 

  
Table 7.2 Examination Statistics for the Sample Test.............................................................216 
 
Table 8.1 Sample Beach Statistics for Correlation Example ..................................................240 
  
Table 8.2 Factorial Combinations for Two-level Experiments with n=2-4............................253 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

x



 
 i

  

 Preface 
 
 
 
 
 •          •           • 
 
 
 
 
         The origins of this book can be found years ago when I was 
a doctoral candidate working on my thesis and finding that I needed numerical tools that I should have 
been taught years before. In the intervening decades, little has changed except for the worse. All fields 
of science have undergone an information explosion while the computer revolution has steadily and 
irrevocability been changing our lives. Although the crystal ball of the future is at best "seen through a 
glass darkly", most would declare that the advent of the digital electronic computer will change 
civilization to an extent not seen since the coming of the steam engine. Computers with the power that 
could be offered only by large institutions a decade ago now sit on the desks of individuals. Methods of 
analysis that were only dreamed of three decades ago are now used by students to do homework 
exercises. Entirely new methods of analysis have appeared that take advantage of computers to perform 
logical and arithmetic operations at great speed. Perhaps students of the future may regard the 
multiplication of two two-digit numbers without the aid of a calculator in the same vein that we regard 
the formal extraction of a square root. The whole approach to scientific analysis may change with the 
advent of machines that communicate orally. However, I hope the day never arrives when the 
investigator no longer understands the nature of the analysis done by the machine. 
 
 Unfortunately instruction in the uses and applicability of new methods of analysis rarely 
appears in the curriculum. This is no surprise as such courses in any discipline always are the last to be 
developed. In rapidly changing disciplines this means that active students must fend for themselves. 
With numerical analysis this has meant that many simply take the tools developed by others and apply 
them to problems with little knowledge as to the applicability or accuracy of the methods. Numerical 
algorithms appear as neatly packaged computer programs that are regarded by the user as "black boxes" 
into which they feed their data and from which come the publishable results. The complexity of many of 
the problems dealt with in this manner makes determining the validity of the results nearly impossible. 
This book is an attempt to correct some of these problems. 
 
 Some may regard this effort as a survey and to that I would plead guilty. But I do not regard the 
word survey as pejorative for to survey, condense, and collate, the knowledge of man is one of the 
responsibilities of the scholar. There is an implication inherent in this responsibility that the information 
be made more comprehensible so that it may more readily be assimilated. The extent to which I have 
succeeded in this goal I will leave to the reader. The discussion of so many topics may be regarded by 
some to be an impossible task. However, the subjects I have selected have all been required of me 

xi
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 during my professional career and I suspect most research scientists would make a similar 
claim. Unfortunately few of these subjects were ever covered in even the introductory level of treatment 
given here during my formal education and certainly they were never placed within a coherent context 
of numerical analysis. 
 
 The basic format of the first chapter is a very wide ranging view of some concepts of 
mathematics based loosely on axiomatic set theory and linear algebra. The intent here is not so much to 
provide the specific mathematical foundation for what follows, which is done as needed throughout the 
text, but rather to establish, what I call for lack of a better term, "mathematical sophistication". There is 
a general acquaintance with mathematics that a student should have before embarking on the study of 
numerical methods. The student should realize that there is a subject called mathematics which is 
artificially broken into sub-disciplines such a linear algebra, arithmetic, calculus, topology, set theory, 
etc. All of these disciplines are related and the sooner the student realizes that and becomes aware of the 
relations, the sooner mathematics will become a convenient and useful language of scientific 
expression. The ability to use mathematics in such a fashion is largely what I mean by "mathematical 
sophistication". However, this book is primarily intended for scientists and engineers so while there is a 
certain familiarity with mathematics that is assumed, the rigor that one expects with a formal 
mathematical presentation is lacking. Very little is proved in the traditional mathematical sense of the 
word. Indeed, derivations are resorted to mainly to emphasize the assumptions that underlie the results. 
However, when derivations are called for, I will often write several forms of the same expression on the 
same line. This is done simply to guide the reader in the direction of a mathematical development. I will 
often give "rules of thumb" for which there is no formal proof. However, experience has shown that 
these "rules of thumb" almost always apply. This is done in the spirit of providing the researcher with 
practical ways to evaluate the validity of his or her results. 
 
 
 The basic premise of this book is that it can serve as the basis for a wide range of courses that 
discuss numerical methods used in science. It is meant to support a series of lectures, not replace them. 
To reflect this, the subject matter is wide ranging and perhaps too broad for a single course. It is 
expected that the instructor will neglect some sections and expand on others. For example, the social 
scientist may choose to emphasize the chapters on interpolation, curve-fitting and statistics, while the 
physical scientist would stress those chapters dealing with numerical quadrature and the solution of 
differential and integral equations. Others might choose to spend a large amount of time on the principle 
of least squares and its ramifications. All these approaches are valid and I hope all will be served by this 
book. While it is customary to direct a book of this sort at a specific pedagogic audience, I find that task 
somewhat difficult. Certainly advanced undergraduate science and engineering students will have no 
difficulty dealing with the concepts and level of this book. However, it is not at all obvious that second 
year students couldn't cope with the material. Some might suggest that they have not yet had a formal 
course in differential equations at that point in their career and are therefore not adequately prepared. 
However, it is far from obvious to me that a student’s first encounter with differential equations should 
be in a formal mathematics course. Indeed, since most equations they are liable to encounter will require 
a numerical solution, I feel the case can be made that it is more practical for them to be introduced to the 
subject from a graphical and numerical point of view. Thus, if the instructor exercises some care in the 
presentation of material, I see no real barrier to using this text at the second year level in some areas. In 
any case I hope that the student will at least be exposed to the wide range of the material in the book lest 
he feel that numerical analysis is limited only to those topics of immediate interest to his particular 
specialty. 
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  Nowhere is this philosophy better illustrated that in the first chapter where I deal with 
a wide range of mathematical subjects. The primary objective of this chapter is to show that 
mathematics is "all of a piece". Here the instructor may choose to ignore much of the material and jump 
directly to the solution of linear equations and the second chapter. However, I hope that some 
consideration would be given to discussing the material on matrices presented in the first chapter before 
embarking on their numerical manipulation. Many will feel the material on tensors is irrelevant and will 
skip it. Certainly it is not necessary to understand covariance and contravariance or the notion of tensor 
and vector densities in order to numerically interpolate in a table of numbers. But those in the physical 
sciences will generally recognize that they encountered tensors for the first time too late in their 
educational experience and that they form the fundamental basis for understanding vector algebra and 
calculus. While the notions of set and group theory are not directly required for the understanding of 
cubic splines, they do form a unifying basis for much of mathematics. Thus, while I expect most 
instructors will heavily select the material from the first chapter, I hope they will encourage the students 
to at least read through the material so as to reduce their surprise when the see it again. 
 
 The next four chapters deal with fundamental subjects in basic numerical analysis. Here, and 
throughout the book, I have avoided giving specific programs that carry out the algorithms that are 
discussed. There are many useful and broadly based programs available from diverse sources. To pick 
specific packages or even specific computer languages would be to unduly limit the student's range and 
selection. Excellent packages are contain in the IMSL library and one should not overlook the excellent 
collection provided along with the book by Press et al. (see reference 4 at the end of Chapter 2). In 
general collections compiled by users should be preferred for they have at least been screened initially 
for efficacy. 
 
 Chapter 6 is a lengthy treatment of the principle of least squares and associated topics. I have 
found that algorithms based on least squares are among the most widely used and poorest understood of 
all algorithms in the literature. Virtually all students have encountered the concept, but very few see and 
understand its relationship to the rest of numerical analysis and statistics. Least squares also provides a 
logical bridge to the last chapters of the book. Here the huge field of statistics is surveyed with the hope 
of providing a basic understanding of the nature of statistical inference and how to begin to use 
statistical analysis correctly and with confidence. The foundation laid in Chapter 7 and the tests 
presented in Chapter 8 are not meant to be a substitute for a proper course of study in the subject. 
However, it is hoped that the student unable to fit such a course in an already crowded curriculum will 
at least be able to avoid the pitfalls that trap so many who use statistical analysis without the appropriate 
care. 
 
 Throughout the book I have tried to provide examples integrated into the text of the more 
difficult algorithms. In testing an earlier version of the book, I found myself spending most of my time 
with students giving examples of the various techniques and algorithms. Hopefully this initial 
shortcoming has been overcome. It is almost always appropriate to carry out a short numerical example 
of a new method so as to test the logic being used for the more general case. The problems at the end of 
each chapter are meant to be generic in nature so that the student is not left with the impression that this 
algorithm or that is only used in astronomy or biology. It is a fairly simple matter for an instructor to 
find examples in diverse disciplines that utilize the techniques discussed in each chapter. Indeed, the 
student should be encouraged to undertake problems in disciplines other than his/her own if for no other 
reason than to find out about the types of problems that concern those disciplines. 
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  Here and there throughout the book, I have endeavored to convey something of the 
philosophy of numerical analysis along with a little of the philosophy of science. While this is certainly 
not the central theme of the book, I feel that some acquaintance with the concepts is essential to anyone 
aspiring to a career in science. Thus I hope those ideas will not be ignored by the student on his/her way 
to find some tool to solve an immediate problem. The philosophy of any subject is the basis of that 
subject and to ignore it while utilizing the products of that subject is to invite disaster. 
 
 There are many people who knowingly and unknowingly had a hand in generating this book. 
Those at the Numerical Analysis Department of the University of Wisconsin who took a young 
astronomy student and showed him the beauty of this subject while remaining patient with his bumbling 
understanding have my perpetual gratitude. My colleagues at The Ohio State University who years ago 
also saw the need for the presentation of this material and provided the environment for the 
development of a formal course in the subject. Special thanks are due Professor Philip C. Keenan who 
encouraged me to include the sections on statistical methods in spite of my shortcomings in this area. 
Peter Stoychoeff has earned my gratitude by turning my crude sketches into clear and instructive 
drawings. Certainly the students who suffered through this book as an experimental text have my 
admiration and well as my thanks. 
 
George W. Collins, II 
September 11, 1990 
 
 
 
A Note Added for the Internet Edition 

 
A significant amount of time has passed since I first put this effort together. Much has changed in 
Numerical Analysis. Researchers now seem often content to rely on packages prepared by others even 
more than they did a decade ago. Perhaps this is the price to be paid by tackling increasingly 
ambitious problems. Also the advent of very fast and cheap computers has enabled investigators to 
use inefficient methods and still obtain answers in a timely fashion. However, with the avalanche of 
data about to descend on more and more fields, it does not seem unreasonable to suppose that 
numerical tasks will overtake computing power and there will again be a need for efficient and 
accurate algorithms to solve problems. I suspect that many of the techniques described herein will be 
rediscovered before the new century concludes. Perhaps efforts such as this will still find favor with 
those who wish to know if numerical results can be believed. 
  
George W. Collins, II 
January 30, 2001   
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 A Further Note for the Internet Edition 
 
 
 Since I put up a version of this book two years ago, I have found numerous errors which 
largely resulted from the generations of word processors through which the text evolved. During the 
last effort, not all the fonts used by the text were available in the word processor and PDF translator. 
This led to errors that were more wide spread that I realized. Thus, the main force of this effort is to 
bring some uniformity to the various software codes required to generate the version that will be 
available on the internet. Having spent some time converting Fundamentals of Stellar Astrophysics 
and The Virial Theorem in Stellar Astrophysics to Internet compatibility, I have learned to better 
understand the problems of taking old manuscripts and setting then in the contemporary format. Thus 
I hope this version of my Numerical Analysis book will be more error free and therefore useable. Will 
I have found all the errors? That is most unlikely, but I can assure the reader that the number of those 
errors is significantly reduced from the earlier version. In addition, I have attempted to improve the 
presentation of the equations and other aspects of the book so as to make it more attractive to the 
reader. All of the software coding for the index was lost during the travels through various word 
processors. Therefore, the current version was prepared by means of a page comparison between an 
earlier correct version and the current presentation. Such a table has an intrinsic error of at least ± 1 
page and the index should be used with that in mind. However, it should be good enough to guide the 
reader to general area of the desired subject.  
 
 Having re-read the earlier preface and note I wrote, I find I still share the sentiments 
expressed therein. Indeed, I find the flight of the student to “black-box” computer programs to obtain 
solutions to problems has proceeded even faster than I thought it would. Many of these programs such 
as MATHCAD are excellent and provide quick and generally accurate ‘first looks’ at problems. 
However, the researcher would be well advised to understand the methods used by the “black-boxes” 
to solve their problems. This effort still provides the basis for many of the operations contained in 
those commercial packages and it is hoped will provide the researcher with the knowledge of their 
applicability to his/her particular problem. However, it has occurred to me that there is an additional 
view provided by this book. Perhaps, in the future, a historian may wonder what sort of numerical 
skills were expected of a researcher in the mid twentieth century. In my opinion, the contents of this 
book represent what I feel scientists and engineers of the mid twentieth century should have known 
and many did. I am confident that the knowledge-base of the mid twenty first century scientist will be 
quite different. One can hope that the difference will represent an improvement.     
 
 Finally, I would like to thank John Martin and Charles Knox who helped me adapt this 
version for the Internet and the Astronomy Department at the Case Western Reserve University for 
making the server-space available for the PDF files. As is the case with other books I have put on the 
Internet, I encourage anyone who is interested to down load the PDF files as they may be of use to 
them. I would only request that they observe the courtesy of proper attribution should they find my 
efforts to be of use. 
 
 
George W. Collins, II 
April, 2003 
Case Western Reserve University 
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