

 3

 Polynomial Approximation,

 Interpolation, and
 Orthogonal Polynomials

 • • •

 In the last chapter we saw that the eigen-equation for a matrix was
a polynomial whose roots were the eigenvalues of the matrix. However, polynomials play a much larger role
in numerical analysis than providing just eigenvalues. Indeed, the foundation of most numerical analysis
methods rests on the understanding of polynomials. As we shall see, numerical methods are usually tailored
to produce exact answers for polynomials. Thus, if the solution to a problem is a polynomial, it is often
possible to find a method of analysis, which has zero formal truncation error. So the extent to which a
problem's solution resembles a polynomial will generally determine the accuracy of the solution. Therefore
we shall spend some time understanding polynomials themselves so that we may better understand the
methods that rely on them.

 55

Numerical Methods and Data Analysis

56

3.1 Polynomials and Their Roots

 When the term polynomial is mentioned, one generally thinks of a function made up of a sum of
terms of the form ai xi. However, it is possible to have a much broader definition where instead of the simple
function xi we may use any general function φi(x) so that a general definition of a polynomial would have
the form

 . (3.1.1) ∑
=

φ=
n

0i
ii)x(a)x(P

Here the quantity n is known as the degree of the polynomial and is usually one less than the number of
terms in the polynomial. While most of what we develop in this chapter will be correct for general
polynomials such as those in equation (3.1.1), we will use the more common representation of the
polynomial so that

φi(x) = xi . (3.1.2)

Thus the common form for a polynomial would be

P(x) = a0 + a1x + a2x2 + … + anxn . (3.1.3)

Familiar as this form may be, it is not the most convenient form for evaluating the polynomial. Consider the
last term in equation (3.1.3). It will take n+1 multiplications to evaluate that term alone and n multiplications
for the next lowest order term. If one sums the series, it is clear that it will take (n+1)n/2 multiplications and
n additions to evaluate P(x). However, if we write equation (3.1.3) as

x)x)x)xaa(a(a)x(P n1n10 LL +++= − , (3.1.4)

then, while there are still n additions required for the evaluation of P(x), the number of multiplications has
been reduced to n. Since the time required for a computer to carry out a multiplication is usually an order of
magnitude greater than that required for addition, equation (3.1.4) is a considerably more efficient way to
evaluate P(x) than the standard form given by equation (3.1.3). Equation (3.1.4) is sometimes called the
"factored form" of the polynomial and can be immediately written down for any polynomial. However, there
is another way of representing the polynomial in terms of factors, namely

)xx()xx)(xx)(xx(a)x(P n321n −−−−= L . (3.1.5)

Here the last n coefficients of the polynomial have been replaced by n quantities known as the roots of the
polynomial. It is important to note that, in general, there are (n+1) parameters specifying a polynomial of
degree n. These parameters can be either the (n+1) coefficients or the n roots and a multiplicative scale factor
an. In order to fully specify a polynomial this many parameters must be specified. We shall see that this
requirement sets constraints for interpolation.

 The n quantities known as the roots are not related to the coefficients in a simple way. Indeed, it is
not obvious that the polynomial should be able to be written in the form of equation (3.1.5). The fact that a

 3 - Polynomial Approximation

 57

polynomial of degree n has exactly n such roots is known as the fundamental theorem of algebra and its
proof is not simple. As we shall see, simply finding the roots is not simple and constitutes one of the more
difficult problems in numerical analysis. Since the roots may be either real or complex, the most general
approach will have to utilize complex arithmetic. Some polynomials may have multiple roots (i.e. more than
one root with the same numerical value). This causes trouble for some root finding methods. In general, it is
useful to remove a root (or a pair if they are complex) once it is found thereby reducing the polynomial to a
lower degree. Once it has been reduced to a quadratic or even a cubic, the analytic formulae for these roots
maybe used. There is an analytic form for the general solution of a quartic (i.e. polynomial of 4th degree),
but it is so cumbersome that it is rarely used. Since it has been shown that there is no general form for the
roots of polynomials of degree 5 or higher, one will usually have to resort to numerical methods in order to
find the roots of such polynomials. The absence of a general scheme for finding the roots in terms of the
coefficients means that we shall have to learn as much about the polynomial as possible before looking for
the roots.

 a. Some Constraints on the Roots of Polynomials

 This subject has been studied by some of the greatest mathematical minds of the last several
centuries and there are numerous theorems that can be helpful in describing the roots. For example, if we re-
multiply equation (3.1.5) the coefficient of xn-1 is just an times the negative summation of the roots so that

 n

an-1 = an Σ xi . (3.1.6)
 i=1

In a similar manner we find that
∑∑
≠

− =
ji j

jin2n xxaa . (3.1.7)

We will see that it is possible to use these relations to obtain estimates of the magnitude of the roots. In
addition, the magnitude of the roots is bounded by

() ()1ax1a maxj
1

max +≤≤+ −
. (3.1.8)

 Finally there is Descarte's rule of signs which we all learned at one time but usually forgot. If we
reverse the order of equation (3.1.3) so that the terms appear in descending powers of x as

0
2n

2n
1n

1n
n

n axaxaxa)x(P ++++= −
−

−
− L , (3.1.9)

then any change of sign between two successive terms is called a variation in sign. Coefficients that are zero
are ignored. With that definition of a sign variation we can state Descarte's rule of signs as

 The number of positive roots of P(x)=0 cannot exceed the number of variations of sign in

P(x) and, in any case, differs from the number of variations by an even integer.

A useful and easily proved corollary to this is

 The number of negative roots of P(x)=0 cannot exceed the number of variations in sign in

P(-x) and, in any case, differs from the number of variations by an even integer.

Numerical Methods and Data Analysis

58

The phrasing concerning the "even integer" results from the possibility of the existence of complex roots,
which occur, in pairs (providing the coefficients are real) where one is the complex conjugate of the other.
With these tools, it is often possible to say a good deal about the properties of the roots of the polynomial in
question. Since most of the methods for finding roots are sequential and require the removal of the roots
leading to a new polynomial of lower degree, we should say something about how this is accomplished.

 b. Synthetic Division

 If we wish to remove a factor from a polynomial we may proceed as if we were doing long
division with the added proviso that we keep track of the appropriate powers of x. Thus if (x-r) is to be
factored out of P(x) we could proceed in exactly the same fashion as long division. Consider the specific
case where r = 2 and

P(x) = x4 + 3x3 ─ 17x2 + 6x ─ 18 . (3.1.10)

The long division would then look like

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

−
+−
−−

+−

+−

−

−

−

−−+
−+−+−

40
22x11
18x11

x147x
x3x7

x105x
x175x

 x2x

11x7x5x
18x3x17x3x)2x(

2

2

23

23

34

23

234

 . (3.1.11)

Thus we can write P(x) as

P(x) = (x-2)(x3+5x2-7x-11) ─ 40/(x-2) , (3.1.12)
or in general as

P(x) = (x-r)Q(x) + R . (3.1.13)
So if we evaluate the polynomial for x = r we get

P(r) = R . (3.1.14)

 3 - Polynomial Approximation

 59

Now if R(r) is zero, then r is a root by definition. Indeed, one method for improving roots is to carry out
repeated division, varying r until the remainder R is acceptably close to zero. A cursory inspection of the
long division expression (3.1.11) shows that much more is being written down than is necessary. In order for
the division to proceed in an orderly fashion, there is no freedom in what is to be done with the lead
coefficients of the largest powers of x. Indeed, the coefficients of the resultant polynomial Q(x) are repeated
below. Also, when searching for a root, the lead coefficient of x in the divisor is always one and therefore
need not be written down. Thus if we write down only the coefficients and r-value for the division process,
we can compress the notation so that

⎪
⎪
⎭

⎪⎪
⎬

⎫

=−−−++=

−−++

=−+−++=

R4011751)x(Q
2214102

)x(P18317312r

 . (3.1.15)

This shorthand form of keeping track of the division is known as synthetic division. Even this notation can
be formulated in terms of a recursive procedure. If we let the coefficients of the quotient polynomial Q(x) be
bi so that

Q(x) = b0 + b1x + b2x2 + … + bn-1xn-1 , (3.1.16)

then the process of finding the bi's in terms of the coefficients ai of the original polynomial P(x) can be
written as

⎪
⎭

⎪
⎬

⎫

=
−=+=

=

−

−

−

1

ii1i

n1n

bR
1n0iarbb

ab
L . (3.1.17)

Here the remainder R is given by b-1 and should it be zero, then r is a root. Therefore, once a root has been
found, it can be removed by synthetic division leading to an new polynomial Q(x). One can then begin again
to find the roots of Q(x) until the original polynomial has been reduced to a cubic or less. Because of the
complexity of the general cubic, one usually uses the quadratic formula. However, even here Press et al1
suggest caution and recommend the use of both forms of the formula, namely

⎪
⎪
⎭

⎪
⎪
⎬

⎫

−±−
=

−±−
=

ac4bb

c2x

a2
ac4bbx

2

2

 . (3.1.18)

Should a or c be small the discriminate will be nearly the same as b and the resultant solution will suffer
from round-off error. They suggest the following simple solution to this problem. Define

2/]ac4b)bsgn(b[q 2 −+−= . (3.1.19)

Then the two roots will be given by

Numerical Methods and Data Analysis

60

⎭
⎬
⎫

=
=

q/cx
a/qx

 . (3.1.20)

 Let us see how one might analyze our specific polynomial in equation (3.1.10). Descartes’ rule of
signs for P(x) tells us that we will have no more than three real positive roots while for P(-x) it states that we
will have no more than one real negative root. The degree of the polynomial itself indicates that there will be
four roots in all. When the coefficients of a polynomial are integer, it is tempting to look for integer roots. A
little exploring with synthetic division shows that we can find two roots so that

P(x) = (x-3)(x+6)(x2+1) , (3.1.21)

and clearly the last two roots are complex. For polynomials with real coefficients, one can even use synthetic
division to remove complex roots. Since the roots will appear in conjugate pairs, simply form the quadratic
polynomial

(x-r)(x-r*) = x2 ─ (r+r*)x + r r* , (3.1.22)

which will have real coefficients as the imaginary part of r cancels out of (r+r*) and rr* is real by definition.
One then uses synthetic division to divide out the quadratic form of equation (3.1.22). A general recurrence
relation similar to equation (3.1.17) can be developed for the purposes of machine computation.

 Normally the coefficients of interesting polynomials are not integers and the roots are not simple
numbers. Therefore the synthetic division will have a certain round off error so that R(r) will not be zero.
This points out one of the greatest difficulties to be encountered in finding the roots of a polynomial. The
round off error in R(r) accumulates from root to root and will generally depend on the order in which the
roots are found. Thus the final quadratic polynomial that yields the last two roots may be significantly
different than the correct polynomial that would result in the absence of round off error. One may get a
feeling for the extent of this problem by redoing the calculation but finding the roots in a different order. If
the values are independent of the order in which they are found, then they are probably accurate. If not, then
they are not.

 c. The Graffe Root-Squaring Process

 We discuss this process not so much for its practical utility as to show the efficacy of the
constraints given in equations (3.1.6,7). Consider evaluating a polynomial for values of x = xi where xi are
the roots so that

∑ ∑ +
++==

j

1k2
i1k2

k2
ik2

k

j
iii xaxaxa)x(P . (3.1.23)

We may separate the terms of the polynomial into even and odd powers of x and since P(xi)=0, we may
arrange the odd powers so that they are all on one side of the equation as

2

k

1k2
i1k2

2

k

k2
ik2 xaxa ⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡ ∑∑ +
+ . (3.1.24)

 3 - Polynomial Approximation

 61

Squaring both sides produces exponents with even powers and a polynomial with new coefficients ai
(p) and having the form

)p(
0

2pn2)p(
n

pn2)p(
n axaxa)x(S +++= − L . (3.1.25)

These new coefficients can be generated by the recurrence relation from

⎪
⎭

⎪
⎬

⎫

>=

−+−= ∑
−

−=
−

+

ni,0a

)a()1(aa2aa2a

)p(
i

1n

1k

2)p(
1

)p(
k2

)p(
k

)p(
2

)p(
n

)1p(
i

l

l
ll

. (3.1.26)

If we continue to repeat this process it is clear that the largest root will dominate the sum in equation (3.1.6)
so that

∑
=

−
∞→∞→ ⎥⎦

⎤
⎢⎣
⎡==

n

1i
)p(

n

)p(
1n

p

p2
ip

p2
max a

aLimxLimx . (3.1.27)

Since the product of the largest two roots will dominate the sums of equation (3.1.7), we may generalize the
result of eq (3.1.27) so that each root will be given by

⎥⎦
⎤

⎢⎣
⎡≅ −

∞→
)p(

n

)p(
1i

p

p2
i a

aLimx . (3.1.28)

While this method will in principle yield all the roots of the polynomial, the coefficients grow so fast that
roundoff error quickly begins to dominate the polynomial. However, in some instance it may yield
approximate roots that will suffice for initial guesses required by more sophisticated methods. Impressive as
this method is theoretically, it is rarely used. While the algorithm is reasonably simple, the large number of
digits required by even a few steps makes the programming of the method exceedingly difficult.

 d. Iterative Methods

 Most of the standard algorithms used to find the roots of polynomials scan the polynomial
in an orderly fashion searching for the root. Any such scheme requires an initial guess, a method for
predicting a better guess, and a system for deciding when a root has been found. It is possible to cast any
such method in the form of a fixed-point iterative function such as was discussed in section 2.3d. Methods
having this form are legion so we will discuss only the simplest and most widely used. Putting aside the
problem of establishing the initial guess, we will turn to the central problem of predicting an improved value
for the root. Consider the simple case of a polynomial with real roots and having a value P(x k) for some
value of the independent variable x k (see Figure 3.1).

Numerical Methods and Data Analysis

62

 Figure 3.1 depicts a typical polynomial with real roots. Construct the tangent to the curve

at the point xk and extend this tangent to the x-axis. The crossing point xk+1 represents an
improved value for the root in the Newton-Raphson algorithm. The point xk-1 can be used to
construct a secant providing a second method for finding an improved value of x.

 Many iterative techniques use a straight line extension of the function P(x) to the x-axis as a means
of determining an improved value for x. In the case where the straight-line approximation to the function is
obtained from the local tangent to the curve at the point xk, we call the method the Newton-Raphson method.
We can cast this in the form of a fixed-point iterative function since we are looking for the place where P(x)
= 0. In order to find the iterative function that will accomplish this let us assume that an improved value of
the root x(k) will be given by

x(k+1) = x(k) + [x(k+1)-x(k)] ≡ x(k) + ∆x(k) . (3.1.29)

Now since we are approximating the function locally by a straight line, we may write

⎪⎭

⎪
⎬
⎫

β+α=

β+α=
++)1k()1k(

)k()k(

x]x[P
x]x[P

. (3.1.30)

Subtracting these two equations we get

P[x(k)] = α[x(k) ─ x(k+1)] = ─ α∆x(k) . (3.1.31)

 3 - Polynomial Approximation

 63

However the slope of the tangent line α is given by the derivative so that

α = dP[x(k)]/dx . (3.1.32)

Thus the Newton-Raphson iteration scheme can be written as

x(k+1) = x(k) ─ P[x(k)]/P'[x(k)] . (3.1.33)

By comparing equation (3.1.33) to equation (2.3.18) it is clear that the fixed-point iterative function for
Newton-Raphson iteration is

Φ(x) = x ─ P(x)/P'(x) . (3.1.34)

 We can also apply the convergence criterion given by equation (2.3.20) and find that the necessary
and sufficient condition for the convergence of the Newton-Raphson iteration scheme is

0
)k(

2 xxxx,1
)]x('P[

)x("P)x(P
≤≤ε∀< . (3.1.35)

 Since this involves only one more derivative than is required for the implementation of the scheme, it
provides a quite reasonable convergence criterion and it should be used in conjunction with the iteration
scheme.

 The Newton-Raphson iteration scheme is far more general than is implied by its use in polynomial
root finding. Indeed, many non-linear equations can be dealt with by means of equations (3.1.34, 35). From
equation (3.1.33), it is clear that the scheme will yield 'exact' answers for first degree polynomials or straight
lines. Thus we can expect that the error at any step will depend on [∆x(k)]2. Such schemes are said to be
second order schemes and converge quite rapidly. In general, if the error at any step can be written as

E(x) = K×(∆x)n , (3.1.36)

where K is approximately constant throughout the range of approximation, the approximation scheme is said
to be of (order) O(∆x)n. It is also clear that problems can occur for this method in the event that the root of
interest is a multiple root. Any multiple root of P(x) will also be a root of P'(x). Geometrically this implies
that the root will occur at a point where the polynomial becomes tangent to the x-axis. Since the denominator
of equation (3.1.35) will approach zero at least quadratically while the numerator may approach zero linearly
in the vicinity of the root(s), it is unlikely that the convergence criterion will be met. In practice, the shallow
slope of the tangent will cause a large correction to x(k) moving the iteration scheme far from the root.

 A modest variation of this approach yields a rather more stable iteration scheme. If instead of using
the local value of the derivative to obtain the slope of our approximating line, we use a prior point from the
iteration sequence, we can construct a secant through the prior point and the present point instead of the local
tangent. The straight line approximation through these two points will have the form

⎪⎭

⎪
⎬
⎫

β+α=

β+α=
−−)1k()1k(

)k()k(

x]x[P
x]x[P

, (3.1.37)

which, in the same manner as was done with equation (3.1.30) yields a value for the slope of the line of

Numerical Methods and Data Analysis

64

)1k()k(

)1k()k(

xx
]x[P]x[P

−

−

−
−

=α . (3.1.38)

 So the iterative form of the secant iteration scheme is

[]
]x[P]x[P

xx]x[Pxx)1k()k(

)1k()k()k(
)k()1k(

−

−
+

−
−

−= . (3.1.39)

 Useful as these methods are for finding real roots, as presented, they will be ineffective in locating
complex roots. There are numerous methods that are more sophisticated and amount to searching the
complex plane for roots. For example Bairstow's method synthetically divides the polynomial of interest by
an initial quadratic factor which yields a remainder of the form

R = αx + β , (3.1.40)

where α and β depend on the coefficients of the trial quadratic form. For that form to contain two roots of the
polynomial both α and β must be zero. These two constraints allow for a two-dimensional search in the
complex plane to be made usually using a scheme such as Newton-Raphson or versions of the secant
method. Press et al strongly suggest the use of the Jenkins-Taub method or the Lehmer-Schur method. These
rather sophisticated schemes are well beyond the scope of this book, but may be studied in Acton2.

 Before leaving this subject, we should say something about the determination of the initial guess.
The limits set by equation (3.1.8) are useful in choosing an initial value of the root. They also allow for us to
devise an orderly progression of finding the roots - say from large to small. While most general root finding
programs will do this automatically, it is worth spending a little time to see if the procedure actually follows
an orderly scheme. Following this line, it is worth repeating the cautions raised earlier concerning the
difficulties of finding the roots of polynomials. The blind application of general programs is almost certain to
lead to disaster. At the very least, one should check to see how well any given root satisfies the original
polynomial. That is, to what extent is P(xi) = 0. While even this doesn't guarantee the accuracy of the root, it
is often sufficient to justify its use in some other problem.

3.2 Curve Fitting and Interpolation

 The very processes of interpolation and curve fitting are basically attempts to get "something for
nothing". In general, one has a function defined at a discrete set of points and desires information about the
function at some other point. Well that information simply doesn't exist. One must make some assumptions
about the behavior of the function. This is where some of the "art of computing" enters the picture. One
needs some knowledge of what the discrete entries of the table represent. In picking an interpolation scheme
to generate the missing information, one makes some assumptions concerning the functional nature of the
tabular entries. That assumption is that they behave as polynomials. All interpolation theory is based on
polynomial approximation. To be sure the polynomials need not be of the simple form of equation (3.1.3),
but nevertheless they will be polynomials of some form such as equation (3.1.1).

 Having identified that missing information will be generated on the basis that the tabular function is

 3 - Polynomial Approximation

 65

represented by a polynomial, the problem is reduced to determining the coefficients of that polynomial.
Actually some thought should be given to the form of the functions φi(x) which determines the basic form of
the polynomial. Unfortunately, more often than not, the functions are taken to be xi and any difficulties in
representing the function are offset by increasing the order of the polynomial. As we shall see, this is a
dangerous procedure at best and can lead to absurd results. It is far better to see if the basic data is - say
exponential or periodic in form and use basis functions of the form eix, sin(i π x), or some other appropriate
functional form. One will be able to use interpolative functions of lower order which are subject to fewer
large and unexpected fluctuations between the tabular points thereby producing a more reasonable result.

 Having picked the basis functions of the polynomial, one then proceeds to determine the
coefficients. We have already observed that an nth degree polynomial has (n+1) coefficients which may be
regarded as (n+1) degrees of freedom, or n+1 free parameters to adjust so as to provide the best fit to the
tabular entry points. However, one still has the choice of how much of the table to fit at any given time. For
interpolation or curve-fitting, one assumes that the tabular data are known with absolute precision. Thus we
expect the approximating polynomial to reproduce the data points exactly, but the number of data points for
which we will make this demand at any particular part of the table remains at the discretion of the
investigator. We shall develop our interpolation formulae initially without regard to the degree of the
polynomial that will be used. In addition, although there is a great deal of literature developed around
interpolating equally spaced data, we will allow the spacing to be arbitrary. While we will forgo the elegance
of the finite difference operator in our derivations, we will be more than compensated by the generality of
the results. These more general formulae can always be used for equally spaced data. However, we shall
limit our generality to the extent that, for examples, we shall confine ourselves to basis functions of the form
xi. The generalization to more exotic basis functions is usually straightforward. Finally, some authors make a
distinction between interpolation and curve fitting with the latter being extended to a single functional
relation, which fits an entire tabular range. However, the approaches are basically the same so we shall treat
the two subjects as one. Let us then begin by developing Lagrange Interpolation formulae.

 a. Lagrange Interpolation

 Let us assume that we have a set of data points Y(xi) and that we wish to approximate the
behavior of the function between the data points by a polynomial of the form
 n

Φ(x) = Σ ajxj . (3.2.1)
 j=0

 Now we require exact conformity between the interpolative function Φ(xi) and the data points Y(xi) so that

∑
=

==Φ=
n

0j

j
ijii n0i,xa)x()x(Y L . (3.2.2)

 Equation (3.2.2) represents n+1 inhomogeneous equations in the n+1 coefficients aj which we could solve
using the techniques in chapter 2. However, we would then have a single interpolation formula that would
have to be changed every time we changed the values of the dependent variable Y(xi). Instead, let us
combine equations (3.2.1) and (3.2.2) to form n+2 homogeneous equations of the form

Numerical Methods and Data Analysis

66

 . (3.2.3)0
)x(xa

)x(Yxa

n

0j

j
j

n

0j
i

j
ij

=

⎪
⎪
⎭

⎪
⎪
⎬

⎫

Φ−

−

∑

∑

=

=

 These equations will have a solution if and only if

0

)x(xxxx1

Yxxxx1

Yxxxx1

Yxxxx1

Det

n32

2
n
2

3
2

2
22

1
n
1

3
1

2
11

0
n
0

3
0

2
00

=

Φ−

−

−

−

L

MMMMMM

L

L

L

 . (3.2.4)

Now let x = xi and subtract the last row of the determinant from the ith row so that expansion by minors
along that row will yield

[Φ(xi) ─ Yi]│xk
j│i = 0 . (3.2.5)

Since 0x
i

j
k ≠ , the value of Φ(xi) must be Y(xi) satisfying the requirements given by equation (3.2.2). Now

expand equation (3.2.4) by minors about the last column so that

∑
=

=−

−

−

=Φ
n

0i
ii

n32

2
n
2

3
2

2
22

1
n
1

3
1

2
11

0
n
0

3
0

2
00

j
k)x(A)x(Y

0xxxx1

Yxxxx1

Yxxxx1

Yxxxx1

x)x(

L

MMMMMM

L

L

L

 . (3.2.3)

Here the Ai(x) are the minors that arise from the expansion down the last column and they are independent
of the Yi's. They are simply linear combinations of the xj' s and the coefficients of the linear combination
depend only on the xi's. Thus it is possible to calculate them once for any set of independent variables xi and
use the results for any set of Yi's. The determinant j

kx depends only on the spacing of the tabular values of

the independent variable and is called the Vandermode determinant and is given by

∏
=>

−==
n

0ji
ji

j
kd)xx(xV . (3.2.7)

Therefore dividing Ai(x) in equation (3.2.6) by the Vandermode determinant we can write the interpolation
formula given by equation (3.2.6) as

∑
=

=Φ
n

0i
ii)x(L)x(Y)x(, (3.2.8)

 where Li(x) is known as the Lagrange Interpolative Polynomial and is given by

 3 - Polynomial Approximation

 67

∏
=
≠

−
−

=
n

0j
ij ji

j
i)xx(

)xx()x(L . (3.2.9)

This is a polynomial of degree n with roots xj for j ≠ i since one term is skipped (i.e. when i = j) in a product
of n+1 terms. It has some interesting properties. For example

ki

n

0j
ij ji

jk
ki)xx(

)xx()x(L δ=−
−

=∏
=
≠

 , (3.2.10)

where δik is Kronecker's delta. It is clear that for values of the independent variable equally separated by an
amount h the Lagrange polynomials become

∏
=
≠

−
−
−

=
n

0j
ij

jn

n

i)xx(
h!i)!in(

)1()x(L . (3.2.11)

 The use of the Lagrangian interpolation polynomials as described by equations (3.2.8) and (3.2.9)
suggest that entire range of tabular entries be used for the interpolation. This is not generally the case. One
picks a subset of tabular points and uses them for the interpolation. The use of all available tabular data will
generally result in a polynomial of a very high degree possessing rapid variations between the data points
that are unlikely to represent the behavior of the tabular data.

 Here we confront specifically one of the "artistic" aspects of numerical analysis. We know only the
values of the tabular data. The scheme we choose for representing the tabular data at other values of the
independent variable must only satisfy some aesthetic sense that we have concerning that behavior. That
sense cannot be quantified for the objective information on which to evaluate it simply does not exist. To
illustrate this and quantify the use of the Lagrangian polynomials, consider the functional values for xi and
Yi given in Table 3.1. We wish to obtain a value for the dependent variable Y when the independent variable
x = 4. As shown in figure 3.2, the variation of the tabular values Yi is rapid, particularly in the vicinity of x =
4. We must pick some set of points to determine the interpolative polynomials.

 Table 3.1

 Sample Data and Results for Lagrangian Interpolation Formulae

I X)4(Li
1
2)4(Li

2
1)4(Li

2
2)4(Li

3
1 YI)4(i

1
1Φ)4(i

2
1Φ)4(i

2
2Φ)4(i

3
1Φ

0 1 1
1 2 -1/3 -2/9 3
3 3 +1/2 +1 +2/5 +4/5 8
 4 6 25/3 86/15 112/15
4 5 +1/2 +1/3 +2/3 +4/9 4
5 8 -1/15 -1/45 2
6 10 1

Numerical Methods and Data Analysis

68

The number of points will determine the order and we must decide which points will be used. The points are
usually picked for their proximity to the desired value of the independent variable. Let us pick them
consecutively beginning with tabular entry xk. Then the nth degree Lagrangian polynomials will be

∏
+

=
≠

−
−

=
kn

kj
ij ji

j
i

n
k)xx(

)xx()x(L . (3.2.12)

Should we choose to approximate the tabular entries by a straight line passing through points bracketing the
desired value of x = 4, we would get

⎪
⎪
⎭

⎪⎪
⎬

⎫

==
−
−

=

==
−
−

=

4xfor
)xx(
)xx()x(L

4xfor
)xx(
)xx(

)x(L

2
1

23

2
2

1
2

2
1

32

3
1

1
2

 . (3.2.13)

Thus the interpolative value given in table 3.1 is simply the average of the adjacent values of Y)4(1

2Φ i. As
can be seen in figure 3.2, this instance of linear interpolation yields a reasonably pleasing result. However,
should we wish to be somewhat more sophisticated and approximate the behavior of the tabular function
with a parabola, we are faced with the problem of which three points to pick. If we bracket the desired point
with two points on the left and one on the right we get Lagrangian polynomials of the form

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

=+=
−−
−−

=

=−=
−−
−−

=

=−=
−−
−−

=

4x,
3
1

)xx)(xx(
)xx)(xx()x(L

4x,1
)xx)(xx(

)xx)(xx(
)x(L

4x,
3
1

)xx)(xx(
)xx)(xx(

)x(L

2313

21
3

2
1

3212

31
2

2
1

3121

32
1

2
1

 . (3.2.14)

 3 - Polynomial Approximation

 69

 Figure 3.2 shows the behavior of the data from Table 3.1. The results of

various forms of interpolation are shown. The approximating polynomials for
the linear and parabolic Lagrangian interpolation are specifically displayed.
The specific results for cubic Lagrangian interpolation, weighted Lagrangian
interpolation and interpolation by rational first degree polynomials are also
indicated.

 Substituting these polynomials into equation (3.2.8) and using the values for Yi from Table 3.1, we get an
interpolative polynomial of the form

P1(x) = 3 21L1(x) + 8 21L2(x) + 4 21L3(x) = ─(7x2-50x+63)/3 . (3.2.15)

Had we chosen the bracketing points to include two on the left and only one on the right the polynomial
would have the form

P2(x) = 8 22L1(x) + 4 22L2(x) + 2 22L3(x) = 2(2x2-31x+135)/15 . (3.2.16)

However, it is not necessary to functionally evaluate these polynomials to obtain the interpolated value. Only
the numerical value of the Lagrangian polynomials for the specific value of the independent variable given

Numerical Methods and Data Analysis

70

on the right hand side of equations (3.2.14) need be substituted directly into equation (3.2.8) along with the
appropriate values of Yi. This leads to the values for and given in Table 3.1. The values are
quite different, but bracket the result of the linear interpolation.

)4(2
1Φ)4(2

2Φ

 While equations (3.13) - (3.16) provide an acceptable method of carrying out the interpolation, there
are more efficiently and readily programmed methods. One of the most direct of these is a recursive
procedure where values of an interpolative polynomial of degree k are fit to successive sets of the data
points. In this method the polynomial's behavior with x is not found, just its value for a specific choice of x.
This value is given by

⎪
⎭

⎪
⎬

⎫

==
−

−+−
=

+

+++−+++
++

0kfor,Y)x(P
)xx(

)x(P)xx(P)xx(
)x(P

ii,i

kii

ki,,2i,1ii1ki,,1i,iki
ki,,1i,i

LL

L
 . (3.2.17)

For our test data given in table 3.1 the recursive formula given by equation (3.2.17) yields

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

+=
−

×−+×−
=

−
−+−

=

+=
−

×−+×−
=

−
−+−

=

+=
−

×−+×−
=

−
−+−

=

3
14

)85(
2)45(4)54(

)xx(
Y)4x(Y)x4(

)4(P

6
)53(

4)43(8)54(
)xx(

Y)4x(Y)x4(
)4(P

13
)32(

8)42(3)34(
)xx(

Y)4x(Y)x4()4(P

43

4334
4,3

32

3223
3,2

21

2112
2,1

 . (3.2.18)

 for k = 1. Here we see that P2,3(4) corresponds to the linear interpolative value obtained using points x2 and
x3 given in table 3.1 as)4(2

1 Φ . In general, the values of Pi,i+1(x) correspond to the value of the straight line
passing through points xi and xi+1 evaluated at x. The next generation of recursive polynomial-values will
correspond to parabolas passing through the points xi, xi+1, and xi+2 evaluated at x.

 For this example they are

⎪
⎪
⎭

⎪
⎪
⎬

⎫

+=
−

×−+×−
=

−

−+−
=

+=
−

×−+×−
=

−

−+−
=

15
86

)83(
)()43(6)84(

)xx(
)4(P)4x()4(P)4x4(

)4(P

3
25

)52(
8)42(3)34(

)xx(
)4(P)4x()4(P)x4(

)4(P

3
14

42

4,323,2
4,3,2

31

3,212,12
3,2,1

 , (3.2.20)

which correspond to the values for and)4(2
1Φ

)4(2
2Φ in table 3.1 respectively. The cubic which passes

through points x1, x2, x3, and x4 is the last generation of the polynomials calculated here by this recursive
procedure and is

15

112
)82(

)()42()()84(
)xx(

)4(P)4x()4(P)x4(
)4(P 15

86
3

25

41

4,3,213,2,13
4,3,2,1 +=

−
×−+×−

=
−

−+−
= . (3.2.21)

The procedure described by equation (3.2.17) is known as Neville's algorithm and can nicely be summarized
by a Table 3.2.

 3 - Polynomial Approximation

 71

The fact that these results exactly replicate those of table 3.1 is no surprise as the polynomial of a particular
degree k that passes through a set of k+1 points is unique. Thus this algorithm describes a particularly
efficient method for carrying out Lagrangian interpolation and, like most recursive proceedures, is easily
implemented on a computer.

 How are we to decide which of the parabolas is "better". In some real sense, both are equally likely.
The large value of results because of the rapid variation of the tabular function through the three
chosen points (see figure 3.1) and most would reject the result as being too high. However, we must
remember that this is a purely subjective judgment. Perhaps one would be well advised to always have the
same number of points on either side so as to insure the tabular variation on either side is equally weighted.
This would lead to interpolation by polynomials of an odd degree. If we chose two points either side of the
desired value of the independent variable, we fit a cubic through the local points and obtain which is
rather close to . It is clear that the rapid tabular variation of the points preceding x = 4 dominate the
interpolative polynomials. So which one is correct? We must emphasis that there is no objectively "correct"
answer to this question. Generally one prefers an interpolative function that varies no more rapidly that the
tabular values themselves, but when those values are sparse this criterion is difficult to impose. We shall
consider additional interpolative forms that tend to meet this subjective notion over a wide range of
conditions. Let us now turn to methods of their construction.

)4(2
1Φ

)4(3
1Φ

)4(2
1Φ

 Table 3.2

 Parameters for the Polynomials Generated by Neville's Algorithm

I X YI PI, I PI, I+1 PI, I+1, I+2 PI, I+1, I+2, I+3

0 1 1 0
 0

1 2 3 3 0
 +13

2 3 8 8 +25/3 0

 4 +6 112/15

3 5 4 4 +86/15 0
 +14/3

4 8 2 2 0
 0

5 10 1 0

 It is possible to place additional constraints on the interpolative function which will make the
appropriate interpolative polynomials somewhat more difficult to obtain, but it will always be possible to
obtain them through consideration of the determinantal equation similar to equation (3.2.6). For example, let

Numerical Methods and Data Analysis

72

us consider the case where constraints are placed on the derivative of the function at a given number of
values for the independent variable.

 b. Hermite Interpolation

 While we will use the Hermite interpolation formula to obtain some highly efficient
quadrature formulae later, the primary reason for discussing this form of interpolation is to show a powerful
approach to generating interpolation formulae from the properties of the Lagrange polynomials. In addition
to the functional constraints of Lagrange interpolation given by equation (3.2.2), let us assume that the
functional values of the derivative Y'(xi) are also specified at the points xi. This represents an additional
(n+1) constraints. However, since we have assumed that the interpolative function will be a polynomial, the
relationship between a polynomial and its derivative means we shall have to be careful in order that these
2n+2 constraints remain linearly independent. While a polynomial of degree n has (n+1) coefficients, its
derivative will have only n coefficients. Thus the specification of the derivative at the various values of the
independent variable allow for a polynomial with 2n+2 coefficients to be used which is a polynomial of
degree 2n+1.

 Rather than obtain the determinantal equation for the 2n+2 constraints and the functional form of the
interpolative function, let us derive the interpolative function from what we know of the properties of Li(x).
For the interpolative function to be independent of the values of the dependent variable and its derivative, it
must have a form similar to equation (3.2.8) so that

∑
=

+=Φ
n

0j
jjjj)x(H)x('Y)x(h)x(Y)x(. (3.2.21)

As before we shall require that the interpolative function yield the exact values of the function at the tabular
values of the independent variable. Thus,

∑
=

+==Φ
n

0j
ijjijjii)x(H)x('Y)x(h)x(Y)x(Y)x(. (3.2.22)

Now the beauty of an interpolation formula is that it is independent of the values of the dependent variable
and, in this case, its derivative. Thus equation (3.2.22) must hold for any set of data points Yi and their
derivatives Y’i . So lets consider a very specific set of data points given by

⎪
⎭

⎪
⎬

⎫

∀=

≠=
=

j,0)x('Y

ij,0)x(Y
1)x(Y

j

j

i

 . (3.2.23)

This certainly implies that hi(xi) must be one. A different set of data points that have the properties that

⎪
⎭

⎪
⎬

⎫

∀=
=

≠=

j,0)x('Y
,0)x(Y

kj,0)x(Y

j

k

i

 , (3.2.24)

will require that hk(xj) be zero. However, the conditions on hi(xj) must be independent of the values of the
independent variable so that both conditions must hold. Therefore

 3 - Polynomial Approximation

 73

hj(xi) = δij . (3.2.25)

where δij is Kronecker's delta. Finally one can consider a data set where

 . 3.2.26) j
,1)x('Y

0)x(Y

j

j
∀

⎪⎭

⎪
⎬
⎫

=

=

Substitution of this set of data into equation (3.2.22) clearly requires that

Hj(xi) = 0 . (3.2.27)

Now let us differentiate equation (3.2.21) with respect to x and evaluate at the tabular values of the
independent variable xi. This yields

∑
=

+==Φ
n

0j
ijjijjii)x('H)x('Y)x('h)x(Y)x(Y)x(' . (3.2.28)

By choosing our data sets to have the same properties as in equations (3.2.23,24) and (3.2.26), but with the
roles of the function and its derivative reversed, we can show that

⎪⎭

⎪
⎬
⎫

δ=

=

ijij

ij

)x('H

0)x('h
. (3.2.29)

We have now place constraints on the interpolative functions hj(x), Hj(x) and their derivatives at each of the
n+1 values of the independent variable. Since we know that both hj(x) and Hj(x) are polynomials, we need
only express them in terms of polynomials of the correct degree which have the same properties at the points
xi to uniquely determine their form.

 We have already shown that the interpolative polynomials will have a degree of (2n+1). Thus we
need only find a polynomial that has the form specified by equations (3.2.25) and (3.2.29). From equation
(3.2.10) we can construct such a polynomial to have the form

hj(x) = vj(x)Lj
2 (x) , (3.2.30)

where vj(x) is a linear polynomial in x which will have only two arbitrary constants. We can use the
constraint on the amplitude and derivative of hj(xi) to determine those two constants. Making use of the
constraints in equations (3.2.25) and (3.2.29) we can write that

⎪⎭

⎪
⎬
⎫

=+=

==

0)x(L)x('L)x(v2)x(L)x('v)x('h

1)x(L)x(v)x(h

ijijiji
2
jijij

i
2
iiiii

 . (3.2.31)

Since vi(x) is a linear polynomial, we can write

vi(x) = aix + bi . (3.2.32)

Numerical Methods and Data Analysis

74

Specifically putting the linear form for vi(x) into equation (3.2.31) we get

⎭
⎬
⎫

+−==
=+=

)x('L)bxa(2a)x('v
1bxa)x(v

iiiiiii

iiiii
 , (3.2.33)

which can be solved for ai and bi to get

⎭
⎬
⎫

+=
−=

)x('Lx21b
)x('L2a

iiii

iii . (3.2.34)

Therefore the linear polynomial vi(x) will have the particular form
vi(x) = 1 ─ 2(x-xi)L'i(xi) . (3.2.35)

 We must follow the same procedure to specify Hj(x). Like hj(x), it will also be a polynomial of
degree 2n+1 so let us try the same form for it as we did for hj(x). So

Hj(x) = uj(x)Lj
2(x) , (3.2.36)

where uj(x) is also a linear polynomial whose coefficients must be determined from

⎪⎭

⎪
⎬
⎫

=+=

==

1)x(L)x('L)x(u2)x(L)x('u)x('H

0)x(L)x(u)x(H

iiiiiii
2
iiiii

i
2
iiiii . (3.2.37)

Since is unity, these constraints clearly limit the values of u)x(L i
2
i i(x) and its derivative at the tabular

points to be

⎭
⎬
⎫

=
=

1)x('u
0)x(u

ii

ii . (3.2.38)

Since ui(x) is linear and must have the form
ui(x) = αix + βi , (3.2.39)

we can use equation (3.2.38) to fine the constants αi and βi as

⎪
⎭

⎪
⎬

⎫

−=
−=β

=α

)xx()x(u
x

1

ii

ii

i

 , (3.2.40)

thereby completely specifying ui(x). Therefore, the two functions hj(x) and Hj(x) will have the specific
form

⎪⎭

⎪
⎬
⎫

−=

−−=

)x(L)xx()x(H

)x(L)]x('L)xx(21[)x(h
2
jjj

2
jjjjj

 . (3.2.41)

All that remains is to find L'j(xj). By differentiating equation (3.2.9) with respect to x and setting x to
 xj, we get

∑
≠

−−=
jk

1
kjjj)xx()x('L , (3.2.42)

which means that vj(x) will simplify to

 3 - Polynomial Approximation

 75

∑
≠ −

−
−=

jk kj

j
j)xx(

)xx(
21)x(v . (3.2.43)

Therefore the Hermite interpolative function will take the form

∑ ∏
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−+=Φ

≠i

2

ij
jijiiii)xx()xx()]x(u'Y)x(vY[)x(. (3.2.44)

 This function will match the original function Yi and its derivative at each of the tabular points.
This function is a polynomial of degree 2n-1 with 2n coefficients. These 2n coefficients are specified by
the 2n constraints on the function and its derivative. Therefore this polynomial is unique and whether it is
obtained in the above manner, or by expansion of the determinantal equation is irrelevant to the result.
While such a specification is rarely needed, this procedure does indicate how the form of the Lagrange
polynomials can be used to specify interpolative functions that meet more complicated constraints. We
will now consider the imposition of a different set of constraints that lead to a class of interpolative
functions that have found wide application.

 c. Splines

 Splines are interpolative polynomials that involve information concerning the derivative
of the function at certain points. Unlike Hermite interpolation that explicitly invokes knowledge of the
derivative, splines utilize that information implicitly so that specific knowledge of the derivative in not
required. Unlike general interpolation formulae of the Lagrangian type, which maybe used in a small
section of a table, splines are constructed to fit an entire run of tabular entries of the independent variable.
While one can construct splines of any order, the most common ones are cubic splines as they generate
tri-diagonal equations for the coefficients of the polynomials. As we saw in chapter 2, tri-diagonal
equations lend themselves to rapid solution involving about N steps. In this case N would be the number
of tabular entries of the independent variable. Thus for relatively few arithmetic operations, one can
construct a set of cubic polynomials which will represent the function over its entire tabular range. If one
were to make a distinction between interpolation and curve fitting, that would be it. That is, one may
obtain a local value of a function by interpolation, but if one desires to describe the entire range of a
tabular function, one would call that curve fitting. Because of the common occurrence of cubic splines,
we shall use them as the basis for our discussion. Generalization to higher orders is not difficult, but will
generate systems of equations for their coefficients that are larger than tri-diagonal. That removes much
of the attractiveness of the splines for interpolation.

 To understand how splines can be constructed, consider a function with n tabular points whose
independent variable we will denote as xi and dependent values as Yi. We will approximate the functional
values between any two adjacent points xi and xi+1 by a cubic polynomial denoted by Ψi(x). Also let the
interval between xi+1 and xi be called

∆xi ≡ xi+1 ─ xi . (3.2.45)

Since the cubic interpolative polynomials Ψi(x) cover each of the n-1 intervals between the n tabular

Numerical Methods and Data Analysis

76

points, there will be 4(n-1) constants to be determined to specify the interpolative functions. As with
Lagrange interpolation theory we will require that the interpolative function reproduce the tabular entries
so that

1n1i
Y)x(

Y)x(

1i1ii

iii −=
⎭
⎬
⎫

=Ψ
=Ψ

++

L . (3.2.46)

Requiring that a single polynomial match two successive points means that two adjacent polynomials will
have the same value where they meet, or

2n1i)x()x(1i1i1ii −=Ψ=Ψ +++ L . (3.2.47)
The requirement to match n tabular points represents n linearly independent constraints on the 4n-4
coefficients of the polynomials. The remaining constraints come from conditions placed on the functional
derivatives. Specifically we shall require that

1n2i
)x(")x("

)x(')x('

iii1i

iii1i −=
⎭
⎬
⎫

Ψ=Ψ
Ψ=Ψ

−

− L . (3.2.48)

Unlike Hermite interpolation, we have not specified the magnitude of the derivatives at the tabular points,
but only that they are the same for two adjacent functions Ψi-1(xi) and Ψi(xi) at the points xi all across the
tabular range. Only at the end points have we made no restrictions. Requiring the first two derivatives of
adjacent polynomials to be equal where they overlap will guarantee that the overall effect of the splines
will be to generate a smoothly varying function over the entire tabular range. Since all the interpolative
polynomials are cubics, their third derivatives are constants throughout the interval ∆xi so that

1n1i,.const)x()x(1i
'''

ii
'''

i −==Ψ=Ψ + L . (3.2.49)
Thus the specification of the functional value and equality of the first two derivatives of adjacent
functions essentially forces the value of the third derivative on each of the functions Ψi(x). This represents
n-1 constraints. However, the particular value of that constant for all polynomials is not specified so that
this really represents only n-2 constraints. In a similar manner, the specification of the equality of the
derivative of two adjacent polynomials for n-2 points represents another n-2 constraints. Since two
derivatives are involved we have an additional 2n-4 constraints bringing the total to 4n-6. However, there
were 4n-4 constants to be determined in order that all the cubic splines be specified. Thus the system as
specified so far is under-determined. Since we have said nothing about the end points it seems clear that
that is where the added constraints must be made. Indeed, we shall see that additional constraints must be
placed either on the first or second derivative of the function at the end points in order that the problem
have a unique solution. However, we shall leave the discussion of the specification of the final two
constraints until we have explored the consequences of the 4n-6 constraints we have already developed.

 Since the value of the third derivative of any cubic is a constant, the constraints on the equality of
the second derivatives of adjacent splines require that the constant be the same for all splines. Thus the
second derivative for all splines will have the form

Ψi"(x) = ax + b . (3.2.50)
If we apply this form to two successive tabular points, we can write

⎭
⎬
⎫

=+=Ψ
=+=Ψ

++++ 1i1i1i1i

iiii

"Ybax)x("
"Ybax)x("

. (3.2.51)

Here we have introduced the notation that Ψ"i(xi)=Y"i. The fact of the matter is that Y"i doesn't exist. We

 3 - Polynomial Approximation

 77

have no knowledge of the real values of the derivatives of the tabular function anywhere. All our
constraints are applied to the interpolative polynomials Ψi(x) otherwise known as the cubic splines.
However, the notation is clear, and as long as we keep the philosophical distinction clear, there should be
no confusion about what Y"i means. In any event they are unknown and must eventually be found. Let us
press on and solve equations (3.2.51) for a and b getting

⎭
⎬
⎫

∆−−=
∆+=−+=

+

+++

ii1iii

i1ii1ii1ii

x/)"Y"Y(x"Yb
x/)"Y"Y()xx/()"Y"Y(a

 . (3.2.52)

Substituting these values into equation (3.2.50) we obtain the form of the second derivative of the cubic
spline as

Ψ"i(x) = [Y"i+1(x-xi) ─ Y"i(x-xi+1)]/∆xi . (3.2.53)

Now we may integrate this expression twice making use of the requirement that the function and its first
derivative are continuous across a tabular entry point, and evaluate the constants of integration to get

Ψi(x) = {Yi ─ Y"i[(∆xi)2-(xi+1-x)2]/6}[(xi+1-x)/∆xi] ─ {Yi+1 ─ Y"i+1[(∆xi)2-(xi-x)2]/6}[(xi-x)/∆xi] . (3.2.54)

This fairly formidable expression for the cubic spline has no quadratic term and depends on those
unknown constants Y"i.

 To get equation (3.2.54) we did not explicitly use the constraints on Ψ'i(x) so we can use them
now to get a set of equations that the constants Y”i must satisfy. If we differentiate equation (3.2.54) and
make use of the condition on the first derivative that

Ψ'i-1(xi) = Ψ'i(xi) , (3.2.55)
we get after some algebra that

Y"i-1∆xi-1+2Y"i(∆xi-1+∆xi)+Y"i+1∆xi = 6[(Yi+1-Yi)/∆xi + (Yi-Yi-1)/∆xi-1] i=2 n-1 . (3.2.56) L

Everything on the right hand side is known from the tabular entries while the left hand side contains three
of the unknown constants Y"i. Thus we see that the equations have the form of a tri-diagonal system of
equations amenable to fast solution algorithms. Equation (3.2.56) represents n-2 equations in n unknowns
clearly pointing out that the problem is still under determined by two constants. If we arbitrarily take
Y"1=Y"n=0, then the splines that arise from the solution of equation (3.2.56) are called natural splines.
Keeping the second derivative zero will reduce the variation in the function near the end points and this is
usually considered desirable. While this arbitrary choice may introduce some error near the end points,
the effect of that error will diminish as one moves toward the middle of the tabular range. If one is given
nothing more than the tabular entries Yi and xi, then there is little more that one can do and the natural
splines are as good as any other assumption. However, should anything be known about the first or
second derivatives at the end points one can make a more rational choice for the last two constants of the
problem? For example, if the values of the first derivatives are known at the end points then
differentiating equation (3.2.56) and evaluating it at the end points yields two more equations of condition
which depend on the end point first derivatives as

⎪⎭

⎪
⎬
⎫

∆−∆−=−

∆−∆−=+

−−−− 1n
'
n1nn1n

"
1n

"
n

1
'

1112
"
22

1"
1

x/]Yx/)YY[(26/YY

x/]Yx/)YY[(3YY
 . (3.2.57)

Numerical Methods and Data Analysis

78

These two added conditions complete the system of equations without destroying their tri-diagonal form
and pose a significant alternative to natural splines should some knowledge of the endpoint derivatives
exist. It is clear that any such information at any point in the tabular range could be used to further
constrain the system so that a unique solution exists. In the absence of such information one has little
choice but to use the aesthetically pleasing natural splines. One may be somewhat disenchanted that it is
necessary to appeal to esthetics to justify a solution to a problem, but again remember that we are trying
to get "something for nothing" in any interpolation or curve fitting problem. The "true" nature of the
solution between the tabular points simply does not exist. Thus we have another example of where the
"art of computing" is utilized in numerical analysis.

 In order to see the efficacy of splines, consider the same tabular data given in Table 3.1 and
investigate how splines would yield a value for the table at x = 4. Unlike Lagrangian interpolation, the
constraints that determine the values for the splines will involve the entire table. Thus we shall have to set
up the equations specified by equation (3.2.56). We shall assume that natural splines will be appropriate
for the example so that

Y0" = Y5" = 0 . (3.2.58)

For i = 1, equation (3.2.56) and the tabular values from table 3.1 yield

4Y1" + Y2" = 6[(8-3)/1 + (3-1)/1] = 42 , i=1 , (3.2.59)

and the entire system of linear equations for the Yi"'s can be written as

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
−

=

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

7
16
18
42

Y

Y

Y

Y

10300
31020
0261
0014

"
4

"
3

"
2

"
1

 . (3.2.60)

The solution for this tri-diagonal system can be found by any of the methods described in Chapter 2, but it is
worth noting the increase in efficiency afforded by the tri-diagonal nature of the system. The solution is
given in Table 3.3.

 The first item to note is that the assumption of natural splines may not be the best, for the value of
Y1" × 10 is significantly different from the zero assumed for Y0". The value of Y" then proceeds to drop
smoothly toward the other boundary implying that the assumption of Y5" = 0 is pretty good. Substituting the
solution for Yi" into equation (3.2.54) we get that

Ψ2(4) = {8 - 1.9876[4-(5-4)2]/6}(4-3)/2 ─ {4 - (-1.9643)[4-(3-4)2]/6}(3-4)/2 = 5.9942 . (3.2.61)

 As can be seen from Table 3.3, the results for the natural cubic splines are nearly identical to the
linear interpolation, and are similar to that of the second parabolic Lagrangian interpolation. However, the
most appropriate comparison would be with the cubic Lagrangian interpolation 31Φ(4) as both approximating
functions are cubic polynomials. Here the results are quite different illustrating the importance of the
constraints on the derivatives of the cubic splines. The Lagrangian cubic interpolation utilizes tabular
information for 2x8 in order to specify the interpolating polynomial. The splines rely on the more local

 3 - Polynomial Approximation

 79

information involving the function and its derivatives specified in the range 3x5. This minimizes the large
tabular variations elsewhere in the table that affect the Lagrangian cubic polynomial and make for a
smoother functional variation. The negative aspect of the spline approach is that it requires a solution
throughout the table. If the number of tabular entries is large and the required number of interpolated values
is small, the additional numerical effort maybe difficult to justify. In the next section we shall find esthetics
and efficiency playing an even larger role in choosing the appropriate approximating method.

 Table 3.3

A Comparison of Different Types of Interpolation Formulae

I

X

i

1
2Y

)4(1

1Φ

)4(2
1Φ

)4(2

2Φ

)4(3
1Φ

ix∆

"
iY

)4(2Ψ

R1, 2, 3, 4)4(w

2
2,1 Φ

0 1 1 1 0.0000
1 2 3 1 10.003
2 3 8 2 1.988
 4 6.000 8.333 5.733 7.467 5.994 5.242 6.000

3 5 4 3 -1.965
4 8 2 2 -0.111
5 10 1 -- -0.000

 d. Extrapolation and Interpolation Criteria

 So far we have obtained several different types of interpolation schemes, but said little
about choosing the degree of the polynomial to be used, or the conditions under which one uses Lagrange
interpolation or splines to obtain the information missing from the table. The reason for this was alluded to in
the previous paragraph - there is no correct answer to the question. One can dodge the philosophical question
of the "correctness" of the interpolated number by appealing to the foundations of polynomial approximation
- namely that to the extent that the function represented by the tabular points can be represented by a
polynomial, the answer is correct. But this is indeed a dodge. For if it were true that the tabular function was
indeed a polynomial, one would simply use the interpolation scheme to determine the polynomial that fit the
entire table and use it. In science, one generally does know something about the nature of a tabular function.
For example, many such tables result from a complicated computation of such length that it is not practical
to repeat the calculation to obtain additional tabular values. One can usually guarantee that the results of
such calculations are at least continuous differentiable functions. Or if there are discontinuities, their location
is known and can be avoided. This may not seem like much knowledge, but it guarantees that one can locally
approximate the table by a polynomial. The next issue is what sort of polynomial should be used and over
what part of the tabular range.

Numerical Methods and Data Analysis

80

 In section 3.1 we pointed out that a polynomial can have a very general form [see equation (3.1.1)].
While we have chosen our basis functions φi(x) to be xi for most of the discussion, this need not have been
the case. Interpolation formulae of the type developed here for xi can be developed for any set of basis
functions φi(x). For example, should the table exhibit exponential growth with the independent variable, it
might be advisable to choose

φi(x) = eiαx = [eαx]i  zi . (3.2.62)

The simple transformation of z = eαx allows all previously generated formulae to be immediately carried over
to the exponential polynomials. The choice of α will be made to suit the particular table. In general, it is far
better to use basis functions φi(x) that characterize the table than to use some set of functions such as the
convenient xi and a larger degree for interpolation. One must always make the choice between fitting the
tabular form and using the lowest degree polynomial possible. The choice of basis functions that have the
proper form will allow the use of a lower degree polynomial.

 Why is it so desirable to choose the lowest degree polynomial for interpolation? There is the
obvious reason that the lower the degree the faster the computation and there are some cases where this may
be an overriding concern. However, plausibility of the result is usually the determining factor. When one fits
a polynomial to a finite set of points, the value of the polynomial tends to oscillate between the points of
constraint. The higher the degree of the polynomial, the larger is the amplitude and frequency of these
oscillations. These considerations become even more important when one considers the use of the
interpolative polynomial outside the range specified by the tabular entries. We call such use extrapolation
and it should be done with only the greatest care and circumspection. It is a fairly general characteristic of
polynomials to vary quite rapidly outside the tabular range to which they have been constrained. The
variation is usually characterized by the largest exponent of the polynomial. Thus if one is using polynomials
of the forth degree, he/she is likely to find the interpolative polynomial varying as x4 immediately outside the
tabular range. This is likely to be unacceptable. Indeed, there are some who regard any extrapolation beyond
the tabular range that varies more than linearly to be unjustified. There are, of course, exceptions to such a
hard and fast rule. Occasionally asymptotic properties of the function that yield the tabular entries are
known, then extrapolative functions that mimic the asymptotic behavior maybe justifiable.

 There is one form of extrapolation that reduces the instabilities associated with polynomials. It is a
form of approximation that abandons the classical basis for polynomial approximation and that is
approximation by rational functions or more specifically quotient polynomials. Let us fit such a function
through the (k − i +1) points i → k. Then we can define a quotient polynomial as

∑
∑

=

=
++ ==

0j

j
0

0j

j
0

ki,,1i,i xb

xa

)x(Q
)x(P)x(R L . (3.2.63)

This function would appear to have (m+n+2) free parameters, but we can factor a0 from the numerator
and b0 from the denominator so that only their ratio is a free parameter. Therefore there are only (m+n+1)
free parameters so we must have

k+1 = m+n+1 , (3.2.64)

functional points to determine them. However, the values of n and m must also be specified separately.

 3 - Polynomial Approximation

 81

Normally the determination of the coefficients of such a function is rather difficult, but Stoer and Bulirsch3
have obtained a recurrence formula for the value of the function itself, which is

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

<=

=

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−
−⎥

⎦

⎤
⎢
⎣

⎡
−
−

−
=

−++++

−++++

+

−+++
++++

1k,0R

)x(fR

1
)x(R)x(R
)x(R)x(R

1
)xx(

)xx(

)x(R)x(R
)x(R)x(R

k,i

ii,i

1ki,,1iki,,1i

1ki,,1i,iki,,1i

ki

i

1ki,,iki,,1i
ki,,1iki,,1i,i

LL

LL

LL
LL

 . (3.2.65)

This recurrence relation produces a function where n = m if the number of points used is odd, but where m
= n+1 should the number of points be even. However, its use eliminates the need for actually knowing the
values of the coefficients as the relationship gives the value of the approximated function itself. That is

ki,,1i,iR)x(f ++≅ L . (3.2.66)

 Equation (3.2.65) conceals most of the difficulties of using rational functions or quotient
polynomials. While the great utility of such approximating functions are their stability for extrapolation, we
shall demonstrate their use for interpolation so as to compare the results with the other forms of interpolation
we have investigated. Since the bulk of the other methods have four parameters available for the
specification of the interpolating polynomial (i.e. they are cubic polynomials), we shall consider a quotient
polynomial with four free parameters. This will require that we use four tabular entries which we shall
choose to bracket the point x = 4 symmetrically. Such an approximating function would have the form

R1,2,3,4(x) = (ax+b)/(αx+β) . (3.2.67)

However, the recursive form of equation (3.2.65) means that we will never determine the values of a, b, α,
and β. The subscript notation used in equations (3.2.63) − (3.2.66) is designed to explicitly convey the
recursive nature of the determination of the interpolative function. Each additional subscript denotes a
successive "generation" in the development of the final result. One begins with the tabular data and the
second of equations (3.2.65). Taking the data from table 3.3 so that f(xi) = Yi, we get for the second
generation that represents the interpolative value at x = 4

Numerical Methods and Data Analysis

82

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

+=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−⎥⎦
⎤

⎢⎣
⎡ −
−⎥⎦

⎤
⎢⎣
⎡

−
−

−
+=

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−⎥

⎦

⎤
⎢
⎣

⎡
−
−

−
+=

+=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−⎥⎦
⎤

⎢⎣
⎡ −
−⎥⎦

⎤
⎢⎣
⎡

−
−

−
+=

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−⎥

⎦

⎤
⎢
⎣

⎡
−
−

−
+=

−=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−⎥⎦
⎤

⎢⎣
⎡ −
−⎥⎦

⎤
⎢⎣
⎡

−
−

−
+=

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−⎥

⎦

⎤
⎢
⎣

⎡
−
−

−
+=

5
26

1
4

421
54
24

422

1
)x(R

)x(R)x(R
1

)xx(
)xx(

)x(R)x(R
)x(R)x(R

3
16

1
4

841
54
34

844

1
)x(R

)x(R)x(R
1

)xx(
)xx(

)x(R)x(R
)x(R)x(R

12
1

8
381

34
24

388

1
)x(R

)x(R)x(R
1

)xx(
)xx(

)x(R)x(R
)x(R)x(R

4,4

3,34,4

4

3

3,34,4
4,44,3

3,3

2,23,3

3

2

2,23,3
3,33,2

2,2

1,12,2

2

1

1,12,2
2,22,1

. (3.2.68)

The third generation will contain only two terms so that

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−
−⎥

⎦

⎤
⎢
⎣

⎡
−
−

−
+=

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−
−⎥

⎦

⎤
⎢
⎣

⎡
−
−

−
+=

1
)x(R)x(R

)x(R)x(R
1

)xx(
)xx(

)x(R)x(R
)x(R)x(R

1
)x(R)x(R
)x(R)x(R

1
)xx(
)xx(

)x(R)x(R
)x(R)x(R

3,34,3

3,24,3

4

2

3,24,3
4,34,3,2

2,23,2

1,12,2

2

1

1,12,2
3,23,2,1

 . (3.2.69)

Finally the last generation will have the single result.

⎪
⎪

⎭

⎪
⎪

⎬

⎫

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−
−⎥

⎦

⎤
⎢
⎣

⎡
−
−

−
+=

1
)x(R)x(R
)x(R)x(R

1
)xx(
)xx(

)x(R)x(R
)x(R)x(R

3,3,24,3,2

3,2,14,3,2

4

1

3,2,14,3,2
4,3,24,3,2,1 . (3.2.70)

We can summarize this process neatly in the form of a "difference" Table (similar to Table 3.2 and Table
4.2) below.

 Note how the recursion process drives the successive 'generations' of R toward the final result. This
is a clear demonstration of the stability of this sort of scheme. It is this type of stability that makes the
method desirable for extrapolation. In addition, such recursive procedures are very easy to program and quite
fast in execution. The final result is given in equation (3.2.70), tabulated for comparison with other methods
in Table 3.3, and displayed in Figure 3.2. This result is the smallest of the six results listed indicating that the

 3 - Polynomial Approximation

 83

rapid tabular variation of the middle four points has been minimized. However, it still compares favorably
with the second parabolic Lagrangian interpolation. While there is not a great deal of differentiation between
these methods for interpolation, there is for extrapolation. The use of quotient polynomials for extrapolation
is vastly superior to the use of polynomials, but one should always remember that one is basically after "free-
lunch" and that more sophisticated is not necessarily better. Generally, it is risky to extrapolate any function
far beyond one typical tabular spacing.

 We have seen that the degree of the polynomial that is used for interpolation should be as low as
possible to avoid unrealistic rapid variation of the interpolative function. This notion of providing a general
"smoothness" to the function was also implicit in the choice of constraints for cubic splines. The constraints
at the interior tabular points guarantee continuity up through the second derivative of the interpolative
function throughout the full tabular range. The choice of Y"1 = Y"n = 0 that produces "natural" splines means
that the interpolative function will vary no faster than linearly near the endpoints. In general, when one has
to make an assumption concerning unspecified constants in an interpolation scheme, one chooses them so as
to provide a slowly varying function. The extension of this concept to more complicated interpolation
schemes is illustrated in the following highly successful interpolation algorithm.

 Table 3.4

 Parameters for Quotient Polynomial Interpolation

I

X

YI

RI, I

RI, I+1,

RI, I+1, I+2

RI, I+1, I+2, I+3

0 1 1 0
 0

1 2 3 3 0
 -12

2 3 8 8 6.5714 0

 4 +16/3 5.2147

3 5 4 4 5.3043 0
 +26/5

4 8 2 2 0
 0

5 10 1 0

 One of the most commonly chosen polynomials to be used for interpolation is the parabola. It tends
not to vary rapidly and yet is slightly more sophisticated than linear interpolation. It will clearly require three
tabular points to specify the three arbitrary constants of the parabola. One is then confronted with the
problem of which of the two intervals between the tabular points should the point to be interpolated be
placed. A scheme that removes this problem while far more importantly providing a gently varying function

Numerical Methods and Data Analysis

84

proceeds as follows: Use four points symmetrically placed about the point to be interpolated. But instead of
fitting a cubic to these four points, fit two parabolas, one utilizing the first three points and one utilizing the
last three points. At this point one exercises an artistic judgment. One may choose to use the parabola with
that exhibits the least curvature (i.e. the smallest value of the quadratic coefficient).

 However, one may combine both polynomials to form a single quadratic polynomial where the
 contribution of each is weighted inversely by its curvature. Specifically, one could write this as

2
kΦw(x) = {ak+1 [2

kΦ(x)] + ak [k+1
2Φ(x)]}/(ak+ak+1) , (3.2.71)

where aks are the inverse of the coefficient of the x2 term of the two polynomials and are given by

∏
∑

≠

+

=
−

=

ij
ji

2k

ki
i

k)xx(

)x(Y
a , (3.2.72)

 and are just twice the inverse of the curvature of that polynomial. The kΦ(x) are the Lagrange polynomials
of second degree and are k+2

2
kΦ(x) = Σ Y(xi)Li(x) . (3.2.73)

 i=k

 Since each of the kΦ(x)s will produce the value of Y(xi) when x = xi, it is clear that equation (3.2.71)
will produce the values of Y(x2) and Y(x3) at the points x2 and x3 adjacent to the interpolative point. The
functional behavior between these two points will reflect the curvature of both polynomials giving higher
weight to the flatter, or more slowly varying polynomial. This scheme was developed in the 1960s by
researchers at Harvard University who needed a fast and reliable interpolation scheme for the construction of
model stellar atmospheres. While the justification of this algorithm is strictly aesthetic, it has been found to
function well in a wide variety of situations. We may compare it to the other interpolation formulae by
applying it to the same data from tables 3.1 and 3.3 that we have used throughout this section. In developing
the parabolic Lagrangian formulae in section 3.1, we obtained the actual interpolative polynomials in
equations (3.2.15) and (3.2.16). By differentiating these expressions twice, we obtain the aks required by
equation (3.2.71) so that

⎪
⎭

⎪
⎬

⎫

==

==
−

−

4/15)4(P2a

7/3)4(P2a
1"

22

1"
11

 . (3.2.74)

Substitution of these values into equation (3.2.71) yields a weighted Lagrangian interpolated value of

1,2
2Φw = {[3P1(4)/7] + [15P2(4)/4]}/[(3/7)+(15/4)] = 6.000 (3.2.75)

We have evaluated equation (3.2.75) by using the rational fraction values for P1(4) and P2(4) which are
identical to the interpolative values given in table 3.1. The values for the relative weights given in equation
(3.2.74) show that the first parabola will only contribute about 15% to the final answer do to its rapid
variation. The more gently changing second parabola contributes the overwhelming majority of the final
result reflecting our aesthetic judgment that slowly varying functions are more plausible for interpolating

 3 - Polynomial Approximation

 85

functions. The fact that the result is identical to the result for linear interpolation is a numerical accident.
Indeed, had round-off error not been a factor, it is likely that the result for the cubic splines would have also
been exactly 6. However, this coincidence points up a common truth: "more sophisticated is not necessarily
better".

 Although slightly more complicated than quadratic Lagrangian interpolation, this scheme is rather
more stable against rapid variation and is certainly more sophisticated than linear interpolation. In my
opinion, its only real competition is the use of cubic splines and then only when the entire range of the table
is to be used as in curve fitting. Even here there is no clear distinction as to which produces the more
appropriate interpolative values, but an edge might be given to cubic splines on the basis of speed depending
on the table size and number of required interpolative values.

 It is worth taking a last look at the results in Table 3.3. We used the accuracy implied by the tables
to provide a basis for the comparison of different interpolative methods. Indeed, some of the calculations
were carried out as rational fractions to eliminate round-off error as the possible source of the difference
between methods. The plausible values range from about 5.2 to 6.00. However, based on the tabular data,
there is no real reason to prefer one value over another. The appropriate choice should revolve around the
extent that one should expect an answer of a particular accuracy. None of the tabular data contain more than
two significant figures. There would have to be some compelling reason to include more in the final result.
Given the data spacing and the tabular variability, even two significant figures are difficult to justify. With
that in mind, one could argue persuasively that linear interpolation is really all that is justified by this
problem. This is an important lesson to be learned for it lies at the root of all numerical analysis. There is no
need to use numerical methods that are vastly superior to the basic data of the problem.

3.3 Orthogonal Polynomials

Before leaving this chapter on polynomials, it is appropriate that we discuss a special, but very important
class of polynomials known as the orthogonal polynomials. Orthogonal polynomials are defined in terms of
their behavior with respect to each other and throughout some predetermined range of the independent
variable. Therefore the orthogonality of a specific polynomial is not an important notion. Indeed, by itself
that statement does not make any sense. The notion of orthogonality implies the existence of something to
which the object in question is orthogonal. In the case of polynomials, that something happens to be other
polynomials. In section 1.3 we discussed the notion of orthogonality for vectors and found that for a set of
vectors to be orthogonal, no element of the set could be expressed in term of the other members of the set.
This will also be true for orthogonal polynomials. In the case of vectors, if the set was complete it was said
to span a vector space and any vector in that space could be expressed as a linear combination of the
orthogonal basis vectors. Since the notion of orthogonality seems to hinge on two things being perpendicular
to each other, it seems reasonable to say that two functions f1(x) and f2(x) are orthogonal if they are
everywhere perpendicular to each other. If we imagine tangent vectors 1t

r
(x) and 2t

r
 (x) defined at every

point of each function, then if
x0)x(t)x(t 21 ∀=•

rr
 , (3.3.1)

Numerical Methods and Data Analysis

86

one could conclude from equation (3.3.1) that f1(x) and f2(x) were mutually perpendicular at each value of x.
If one considers the range of x to represent an infinite dimension vector space with each value of x
representing a dimension so that the vectors 1t

r
(x) represented basis vectors in that space, then orthogonality

could be expressed as

 . (3.3.2) 0dx)x(t)x(t 2

b

a
1 =∫

Thus, it is not unreasonable to generalize orthogonality of the functions themselves by

ji,0dx)x(f)x(f j

b

a
i ≠=∫ . (3.3.3)

Again, by analogy to the case of vectors and linear transformations discussed in chapter 1 we can define two
functions as being orthonormal if

ijj

b

a
i dx)x(f)x(f)x(w δ=∫ . (3.3.4)

Here we have included an additional function w(x) which is called a weight function. Thus the proper
statement is that two functions are said to be orthonormal in the interval a x b, relative to a weight function
w(x), if they satisfy equation (3.3.4). In this section we shall consider the subset of functions known as
polynomials.

 It is clear from equation (3.3.4) that orthonormal polynomials come in sets defined by the weight
function and range of x. These parameters provide for an infinite number of such sets, but we will discuss
only a few of the more important ones. While we will find it relatively easy to characterize the range of the
independent variable by three distinct categories, the conditions for the weight function are far less stringent.
Indeed the only constraint on w(x) is

w(x) > 0 ∀x ∈ a ≤  x ≤  b . (3.3.5)

While one can find orthogonal functions for non-positive weight functions, it turns out that they are not
unique and therefore not well defined. Simply limiting the weight function to positive definite functions in
the interval a-b, still allows for an infinite number of such weight functions and hence an infinite number of
sets of orthogonal polynomials.

 Let us begin our search for orthogonal polynomials by using the orthogonality conditions to see how
such polynomials can be generated. For simplicity, let us consider a finite interval from a to b. Now an
orthogonal polynomial φi(x) will be orthogonal to every member of the set of polynomials other than itself.
In addition, we will assume (it can be proven) that the polynomials will form a complete set so that any
polynomial can be generated from a linear combination of the orthogonal polynomials of the same degree or
less. Thus, if qi(x) is an arbitrary polynomial of degree i, we can write

0dx)x(q)x()x(w
b

a
1ii =φ∫ − . (3.3.6)

Now let

)x(U
dx

)x(Ud
)x()x(w)i(

ii
i

i

i ≡=φ . (3.3.7)

 3 - Polynomial Approximation

 87

The function Ui(x) is called the generating function of the polynomials φi(x) and is itself a polynomial of
degree 2i so that the ith derivative is an ith degree polynomial. Now integrate equation (3.3.7) by parts
i-times to get

)i(
iU

[]∫ −
−

−
−

−
−

−
− −++−==

b

a

a

b

)1i(
1ii

1i'
1i

)2i(
i1i

)1i(
i1i

)i(
i)x(q)x(U)1()x(q)x(U)x(q)x(U0dx)x(q)x(U L . (3.3.8)

Since qi(x) is an arbitrary polynomial each term in equation (3.3.8) must hold separately so that

⎪⎭

⎪
⎬
⎫

====

====
−

−

0)b(U)b(U)b(U

0)a(U)a(U)a(U
)1i(

i
'
ii

)1i(
i

'
ii

L

L
 . (3.3.9)

Since φi(x) is a polynomial of degree i we may differentiate it i+1 times to get

0
dx

)x(Ud
)x(w

1
dx
d

i
i

i

1i

1i

=⎥
⎦

⎤
⎢
⎣

⎡
=

+

 . (3.3.10)

This constitutes a differential equation of order 2i+1 subject to the 2i boundary conditions given by equation
(3.3.9). The remaining condition required to uniquely specify the solution comes from the normalization
constant required to make the integral of φi

2(x) unity. So at this point we can leave Ui(x) uncertain by a scale
factor. Let us now turn to the solution of equation (3.3.10) subject to the boundary conditions given by
equation (3.3.9) for some specific weight functions w(x).

 a. The Legendre Polynomials

 Let us begin by restricting the range to -1 ≤  x ≤  1 and taking the simplest possible weight
function, namely

w(x) = 1 , (3.3.11)
so that equation (3.3.9) becomes

[] 0)x(U
dx
d

i1i2

1i2

=
=

+

 . (3.3.12)

Since Ui(x) is a polynomial of degree 2i, an obvious solution which satisfies the boundary conditions is

Ui(x) = Ci(x2-1)i . (3.3.13)

Therefore the polynomials that satisfy the orthogonality conditions will be given by

i

i2i

ii dx
)1x(dC)x(−

=φ . (3.3.14)

 If we apply the normalization criterion we get

∫∫
+

−

+

−
⎥
⎦

⎤
⎢
⎣

⎡ −
==φ

1

1 i

2i

i

1

1

2
i dx

dx
)1x(dC1dx)x(, (3.3.15)

so that
Ci = [2ii!]-1 . (3.3.16)

Numerical Methods and Data Analysis

88

We call the orthonormal polynomials with that normalization constant and satisfying equation (3.3.14) the
Legendre polynomials and denote them by

Pi(x) = [2ii!]-1di(x2-1)i/dxi . (3.3.17)

One can use equation (3.3.17) to verify that these polynomials will satisfy the recurrence relation

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

=

=

⎥⎦
⎤

⎢⎣
⎡
+

−⎥⎦
⎤

⎢⎣
⎡

+
+

= −+

x)x(P

1)x(P

)x(P
1i

i)x(xP
1i
1i2)x(P

1

0

1ii1i

 , (3.3.18)

The set of orthogonal polynomials that covers the finite interval from -1 to +1 and whose members are
orthogonal relative to the weight function w(x) = 1 are clearly the simplest of the orthogonal polynomials.
One might be tempted to say that we have been unduly restrictive to limit ourselves to such a specific
interval, but such is not the case. We may transform equation (3.3.15) to any finite interval by means of a
linear transformation of the form

y(x) = x[(b-a)/2] +(a+b)/2 , (3.3.19)
so that we obtain an integral

ij

b

a ji dy)y()y(
ab

2
δ=φφ⎥⎦

⎤
⎢⎣
⎡

− ∫ , (3.3.20)

that resembles equation (3.3.4). Thus the Legendre polynomials form an orthonormal set that spans any
finite interval relative to the unit weight function.

 b. The Laguerre Polynomials

 While we noted that the Legendre polynomials could be defined over any finite interval
since the linear transformation required to reach such as interval didn't affect the polynomials, we had earlier
mentioned that there are three distinct intervals that would have to be treated differently. Here we move to
the second of these - the semi-infinite interval where 0≤ x≤ ∞. Clearly the limits of this interval cannot be
reached from any finite interval by a linear transformation. A non-linear transformation that would
accomplish that result would destroy the polynomic nature of any polynomials obtained in the finite interval.
In addition, we shall have to consider a weight function that asymptotically approaches zero as x�� as any
polynomials in x will diverge making it impossible to satisfy the normalization condition. Perhaps the
simplest weight function that will force a diverging polynomial to zero as x → ∞ is e-α x. Therefore our
orthogonal polynomials will take the form

i
i

i
x

I dx
)x(Ud

e)x(α=φ , (3.3.21)

where the generating function will satisfy the differential equation

 0
dx

)x(Ud
e

dx
d

i
i

i
x

1i

1i

=⎥
⎦

⎤
⎢
⎣

⎡ α
=

+

 , (3.3.22)

and be subject to the boundary conditions

 3 - Polynomial Approximation

 89

⎪⎭

⎪
⎬
⎫

=∞==∞=∞

====
−

−

0)(U)(U)(U

0)0(U)0(U)0(U
)1i(

i
'
ii

)1i(
i

'
ii

L

L
 . (3.3.23)

When subjected to those boundary conditions, the general solution to equation (3.3.22) will be

Ui(x) = Cixie-αx , (3.3.24)
so that the polynomials can be obtained from

i

xiix

i dx
)ex(d

!i
e)x(

α−α

=φ , (3.3.25)

 If we set α = 1, then the resultant polynomials are called the Laguerre polynomials and when normalized
have the form

i

xiix

i dx
)ex(d

!i
e −

=L , (3,3,26)

and will satisfy the recurrence relation

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

−=

=

⎥⎦
⎤

⎢⎣
⎡
+

−⎥⎦
⎤

⎢⎣
⎡

+
−+

= −+

x1)x(

1)x(

)x(
1i

i)x(
1i

x1i2)x(

1

0

1ii1i

L

L

LLL

 . (3.3.27)

These polynomials form an orthonormal set in the semi-infinite interval relative to the weight function e-x.

 c. The Hermite Polynomials

 Clearly the remaining interval that cannot be reached from either a finite interval or semi-
infinite interval by means of a linear transformation is the full infinite interval -∞≤ x +∞. Again we will
need a weight function that will drive the polynomial to zero at both end points so that it must be symmetric
in x. Thus the weight function for the semi-infinite interval will not do. Instead, we pick the simplest
symmetric exponential

≤

22xeα , which leads to polynomials of the form

 i
i

i2x2
i dx

)x(Ud
e)x(α=φ , (3.3.28)

that satisfy the differential equation

0
dx

)x(Ud
e

dx
d

i
i

i2x2

i

1i

=⎥
⎦

⎤
⎢
⎣

⎡ α
+

 , (3.3.29)

subject to the boundary conditions
0)(U)(U)(U)1i(

i
'
ii =±∞==±∞=±∞ −L . (3.3.30)

This has a general solution satisfying the boundary conditions that look like

Numerical Methods and Data Analysis

90

Ui(x) = Cie-α2x2

 , (3.3.31)

which when normalized and with α = 1, leads to the Hermite polynomials that satisfy

i

2xi2xi
i dx

ede)1()x(H
−

−= . (3.3.32)

 Table 3.5

 The First Five Members of the Common Orthogonal Polynomials

I PI(X) LI(X) HI(X)
0 1 1 1
1 x 1-x 2x
2 (3x2-1)/2 (2-4x+x2)/2 2(2x2-1)
3 x(5x2-3)/2 (6-18x+9x2-x3)/6 4x(2x2-3)
4 (35x4-30x2+3)/8 (24-96x+72x2-6x3+x4)/24 4(4x4-16x2+3)

Like the other polynomials, the Hermite polynomials can be obtained from a recurrence relation. For the
Hermite polynomials that relation is

⎪
⎭

⎪
⎬

⎫

=
=

−= −+

x2)x(H
1)x(H

)x(iH2)x(xH2)x(H

1

0

1ii1i

 . (3.3.31)

.We have now developed sets of orthonormal polynomials that span the three fundamental ranges of the real
variable. Many other polynomials can be developed which are orthogonal relative to other weight functions,
but these polynomials are the most important and they appear frequently in all aspects of science.

 d. Additional Orthogonal Polynomials

 There are as many additional orthogonal polynomials as there are positive definite weight
functions. Below we list some of those that are considered to be classical orthogonal polynomials as they
turn up frequently in mathematical physics. A little inspection of Table 3.6 shows that the Chebyschev
polynomials are special cases of the more general Gegenbauer or Jacobi polynomials. However, they turn up
sufficiently frequently that it is worth saying more about them. They can be derived from the generating
function in the same manner that the other orthogonal polynomials were, so we will only quote the results.
The Chebyschev polynomials of the first kind can be obtained from the reasonably simple trigonometric
formula

Ti(x) = cos[i cos-1(x)] . (3.3.34)

 3 - Polynomial Approximation

 91

 Table 3.6

 Classical Orthogonal Polynomials of the Finite Interval

Name Weight Function w(x)
Legendre 1

Gegenbauer or Ultraspherical 2
1)x1(2 −λ−

Jacobi or Hypergeometric βα −−)x1()x1(
Chebyschev of the first kind 2

1)x1(2 −−
Chebyschev of the second kind 2

1)x1(2 +−

However, in practice they are usually obtained from a recurrence formula similar to those for the other
polynomials. Specifically

⎪
⎭

⎪
⎬

⎫

=
=

−= −+

x)x(T
1)x(T

)x(T)x(xT2)x(T

1

0

1ii1i

. (3.3.35)

The Chebyschev polynomials of the second kind are represented by the somewhat more complicated
trigonometric formula

Vi(x) = sin[(i+1)cos-1(x)]/sin[cos-1(x)] , (3.3.36)

and obey the same recurrence formula as Chebyschev polynomials of the first kind so

⎪
⎭

⎪
⎬

⎫

=
=

−= −+

x2)x(V
1)x(V

)x(V)x(xV2)x(V

1

0

1ii1i

 . (3.3.37)

Only the starting values are slightly different. Since they may be obtained from a more general class of
polynomials, we should not be surprised if there are relations between them. There are, and they take the
form

⎭
⎬
⎫

−=−

−=

+−

−

)x(T)x(xT)x(V)x1(

)x(xV)x(V)x(T

1ii1i
2

1iii
 . (3.3.38)

 Since the orthogonal polynomials form a complete set enabling one to express an arbitrary
polynomial in terms of a linear combination of the elements of the set, they make excellent basis functions
for interpolation formulae. We shall see in later chapters that they provide a basis for curve fitting that
provides great numerical stability and ease of solution. In the next chapter, they will enable us to generate
formulae to evaluate integrals that yield great precision for a minimum of effort. The utility of these
functions is of central importance to numerical analysis. However, all of the polynomials that we have

Numerical Methods and Data Analysis

92

discussed so far form orthogonal sets over a continuous range of x. Before we leave the subject of
orthogonality, let us consider a set of functions, which form a complete orthogonal set with respect to a
discrete set of points in the finite interval.

 e. The Orthogonality of the Trigonometric Functions

 At the beginning of the chapter where we defined polynomials, we represented the most
general polynomial in terms of basis functions φi(x). Consider for a moment the case where

φi(x) = sin(iπx) . (3.3.39)

Now integration by parts twice, recovering the initial integral but with a sign change, or perusal of any good
table of integrals4 will convince one that

kj

1

1

1

1
dx)xjcos()xkcos(dx)xjsin()xksin(δ=ππ=ππ ∫∫

+

−

+

−
 . (3.3.40)

Thus sines and cosines form orthogonal sets of functions of the real variable in the finite interval. This will
come as no surprise to the student with some familiarity with Fourier transforms and we will make much of
it in chapters to come. But what is less well known is that

∑ ∑
−

=

−

=

<+<δ=ππ=ππ
1N2

0x

1N2

0x
kj N2)jk(0,)N/xjcos()N/xkcos(

N
1)N/xjsin()N/xksin(

N
1

, (3.3.41)

which implies that these functions also form an orthogonal set on the finite interval for a discrete set of
points. The proof of this result can be obtained in much the same way as the integral, but it requires some
knowledge of the finite difference calculus (see Hamming5 page 44, 45). We shall see that it is this discrete
orthogonality that allows for the development of Fourier series and the numerical methods for the calculation
of Power Spectra and "Fast Fourier Transforms". Thus the concept of orthogonal functions and polynomials
will play a role in much of what follows in this book.

 3 - Polynomial Approximation

 93

Chapter 3 Exercises

 1. Find the roots of the following polynomial

 2x5 ─ 225x4 + 2613x3 ─ 11516x2 +21744x ─ 14400 = P(x) ,

 a. by the Graffe Root-squaring method,
 b. any interative method,
 c. then compare the accuracy of the two methods.

 2. Find the roots of the following polynomials:

 a. P(x) = x4 ─ 7x3 + 13x2 ─ 7x + 12

 b. P(x) = 2x4 ─ 15x3 + 34x2 ─ 25x + 14

 c. P(x) = 4x4 ─ 9x3 ─ 12x2 ─ 35x ─ 18

 d. P(x) = +0.0021(x3+x) + 1.000000011x2 + 0.000000011.
 Comment of the accuracy of your solution.

 3. Find Lagrangian interpolation formulae for the cases where the basis functions are

 a. φi(x) = eix

 b. φi(x) = sin(iπx/h) ,

 where h is a constant interval spacing between the points xi.

 4. Use the results from problem 3 to obtain values for f(x) at x=0.5, 0.9 and 10.3 in the

following table:

 xi f(xi)
 0.0 1.0
 0.4 2.0
 0.8 3.0
 1.2 5.0
 2.0 3.0
 5.0 1.0
 8.0 8.0 .

 Compare with ordinary Lagrangian interpolation for the same degree polynomials and cubic

splines. Comment on the result.

Numerical Methods and Data Analysis

94

 5. Given the following table, approximate f(x) by
 n
 f(x) = Σ aisin(ix).
 i=1

 Determine the "best" value of n for fitting the table. Discuss your reasoning for making the
choice you made.

 xi f(xi)
 1.0 +.4546
 2.0 -.3784
 3.0 -.1397
 4.0 +.4947
 5.0 -.2720
 6.0 -.2683
 7.0 +.4953
 8.0 -.1439

 6. Find the normalization constants for

 a. Hermite polynomials
 b. Laguerre polynomials
 c. Legendre polynomials that are defined in the interval -1→ +1.

 7. Use the rules for the manipulation of determinants given in chapter 1 (page 8) to show how

the Vandermode determinant takes the form given by equation (3.3.7)

 8. In a manner similiar to problem 7, show how the Lagrangian polynomials take the form

given by equation (3.2.9).

 9. Explicitly show how equation (3.2.29) is obtained from equations (3.2.23), (3.2.24), and

(3.2.26).

 10. Integrate equation (3.2.53) to obtain the tri-diagonal equations (3.2.54). Show explicitly

how the constraints of the derivatives of Yi enter into the problem.

 11. By obtaining equation (3.3.18) from equation (3.3.17) show that one can obtain the

recurrence relations for orthogonal polynomials from the defining differential equation.

 12. Find the generating function for Gegenbauer polynomials and obtain the recurrence relation

for them.

 13. Show that equation (3.3.41) is indeed correct.

 3 - Polynomial Approximation

 95

Chapter 3 References and Supplemental Reading

1. Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T., "Numerical Recipies the Art of

Scientific Computing" (1986), Cambridge University Press Cambridge, New York, New Rochelle,
Melbourne, Sydney.

2. Acton, Forman S., "Numerical Methods That Work", (1970) Harper and Row, New York.

3. Stoer, J. and Bulirsch, R., "Introduction to Numerical Analysis" (1980), Springer-Verlag, New

York, §2.2.

4. Gradshteyn, I.S. and Ryzhik,I.M., "Table of Integrals, Series, and Products : corrected and enlarged

edition" (1980), (ed. A. Jeffrey), Academic Press, New York, London, Toronto, Sydney, San
Francisco, pp 139-140.

5. Hamming, R.W., "Numerical Methods for Scientists and Engineers" (1962) McGraw-Hill Book Co.,

Inc., New York, San Francisco, Toronto, London.

For an excellent general discussion of polynomials one should read

6. Moursund, D.G., and Duris, C.S., "Elementary Theory and Applications of Numerical Analysis"

(1988) Dover Publications, Inc. New York, pp 108-140.

A very complete discussion of classical orthogonal polynomials can be found in

7. Bateman, H., The Bateman Manuscript Project, "Higher Transcendental Functions" (1954) Ed. A.

Erde'lyi, Vol. 3, McGraw-Hill Book Co., Inc. New York, Toronto, London, pp 153-228.

Numerical Methods and Data Analysis

96

	Parameters for the Polynomials Generated by Neville's Algori
	Parameters for Quotient Polynomial Interpolation

