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We have come to that place in the study of stellar structure where we must be 
mindful of the flow of energy through the star. After all, stars do shine. So far, we 
have been able to learn much about the equilibrium structure of a star without 
considering that it is really a structure in a steady state, rather than one in perfect 
strict equilibrium. The basic reason that we have been able to ignore the flow of 
energy through the star is that, during a dynamical time, a very small fraction of the 
stored energy in the star escapes from the star. Although a star is not, strictly 
speaking, an equilibrium structure, it comes closer to being one than most any other 
object in the universe. 
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 However, before delving into the actual movement of energy within the star, 
we must first identify the sources of that energy as well as the processes which 
impede its flow. This will also give us the chance to discuss the stores of energy 
within the star since these certainly represent a potential supply of flowing energy 
with which to generate the stellar luminosity. 
 
3.1   "Energies" of Stars 
 
One of the great mysteries of the late nineteenth and early twentieth centuries was 
the source of the energy required to sustain the luminosity of the sun. By then, the 
defining solar parameters of mass, radius, and luminosity were known with sufficient 
precision to attempt to relate them. For instance, it was clear that if the sun derived 
its energy from chemical processes typically yielding less that 1012 erg/g, it could 
shine no longer than about 10,000 years at its current luminosity. It is said that Lord 
Kelvin, in noting that the liberation of gravitational energy could only keep the sun 
shining for about 10 million years, found it necessary to reject Charles Darwin's 
theory of evolution because there would have been insufficient time for natural 
selection to provide the observed diversity of species. 
 
  a  Gravitational Energy 
 
  It is generally conceded that the sun has shone at roughly its present 
luminosity for at least the past 2 billion years and has been in existence for nearly 5 
billion years. With this in mind, let us begin our study of the sources of stellar energy 
with an inventory of the stores of energy available to the sun. Perhaps the most 
obvious source of energy is that suggested by Lord Kelvin, namely gravitation. From 
the integral theorems of Chapter 2, we may place a limit on the gravitational energy 
of the sun by remembering that I1,1(R) is related to the total gravitational potential 
energy. Thus, from equations (2.2.2) and (2.2.5) 
 

                                       (3.1.1) 
 
The right-hand side of the inequality is the gravitational potential energy for a 
uniform density sphere, which provides a sensible upper limit for the energy. 
Remember that the gravitational energy is considered negative by convention; a 
rather larger magnitude of energy may be available for a star that is more centrally 
concentrated than a uniform- density sphere. We may acquire a better estimate of the 
gravitational potential energy by using the results for a polytrope. Chandrasekhar1 
obtains the following result, due to Betti and Ritter, for the gravitational potential 
energy of a polytrope: 
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                                  (3.1.2) 
For a star in convective equilibrium (that is, n = 3/2) the factor multiplying GM2/R 
becomes 6/7 or nearly unity. Note that for a polytrope of index 5, Ω → -∞ implying 
an infinite central concentration of material. This is also one of the polytropes for 
which there exists an analytic solution and ξ1 = ∞. Thus, one has the picture of a 
mass point surrounded by a massless envelope of infinite extent. Equation (3.1.2) 
also tells us that as the polytropic index increases, so does the central concentration. 
 
 It is not at all obvious that the total gravitational energy would be available to 
permit the star to shine. Some energy must be provided in the form of heat, to 
provide the pressure which supports the star. We may use the Virial theorem 
[equation (1.2.35)] to estimate how much of the gravitational energy can be utilized 
by the luminosity. Consider a star with no mass motions, so that the macroscopic 
kinetic energy T in equation (1.2.35) is zero. Let us also assume that the equilibrium 
state is good enough that we can replace the time averages by the instantaneous 
values. Then the Virial theorem becomes 
 

 2U + Ω = 0                                       (3.1.3) 
 
 Remember that U is the total internal kinetic energy of the gas which 
includes all motions of the particles making up the gas. Now we know from 
thermodynamics that not all the internal kinetic energy is available to do work, and it 
is therefore not counted in the internal energy of the gas. The internal kinetic energy 
density of a differential mass element of the gas is 
 

 dU = (3/2)RTdm = (3/2)(CP-CV)Tdm                         (3.1.4) 
 
where the relationship of the gas constant R to the specific heats was given in    
Chapter 2 [equation (2.4.5)]. However, from the definition of specific heats [equation 
(2.4.4)], the internal heat energy of a differential mass element is 
 

 dU = CVTdm                                          (3.1.5) 
 
Eliminating Tdm from equations (3.1.4) and (3.1.5) and integrating the energy 
densities of the entire star, we get 

 U = (3/2) <γ  - 1> U                                    (3.1.6) 
 
where U is the total internal heat energy or just the total internal energy. The quantity 
<γ - 1> is the value of γ - 1 averaged over the star. For simplicity, let us assume that γ 
is constant through out the star. Then the Virial theorem becomes 
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 3(γ-1)U + Ω = 0                                           (3.1.7) 
 
Remembering that the total energy E is the sum of the internal energy and the 
gravitational energy, we can express the Virial theorem in the following ways: 
 

                                      (3.1.8) 
It is clear that for γ > 4/3 (that is, n < 3), the total energy of the star will be negative. 
This simply says that the star is gravitationally bound and can be in equilibrium. So 
we can look for the physically reasonable polytropes to have indices less than or 
equal to 3. The case of n = 3 is an interesting one that we shall return to later, for it 
represents radiation dominated gas. In the limit of complete radiation dominance, the 
total energy of the configuration will be zero. 
 
  b   Rotational Energy 
  
  While utilizing the Virial theorem to estimate the gravitational 
energy, we set the mass motions of the star to zero so that the macroscopic kinetic 
energy T was zero. However, stars do rotate, and we should not forget to count the 
rotational energy in the inventory of energies. We may place a reasonable upper limit 
on the magnitude of the rotational energy that we can expect by noting that (1) the 
moment of inertia of the star will always be less than that of a sphere of uniform 
density and (2) there is a limit to the angular velocity ωc at which the star can rotate. 
Thus, for a centrally condensed star 

                               (3.1.9) 
which implies that the rotational energy must be bounded by 

                                (3.1.10) 
 One may quibble that we have used the angular velocity limit for a centrally 
condensed star and the moment of inertia for a uniform-density star, but the fact 
remains that it is extremely difficult for a star to have more than about 10 percent of 
the magnitude of its gravitational energy stored in the form of rotational energy.  
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  c  Nuclear Energy 
 
  Of course, the ultimate upper limit for stored energy is the energy 
associated with the rest mass itself. It is also the common way of estimating the 
energy available from nuclear sources. Indeed, that fraction of the rest mass which 
becomes energy when four hydrogen atoms are converted to one helium atom 
provides the energy to sustain the solar luminosity. Below is a short table giving the 
mass loss for a few common elements involved in nuclear fusion processes. 
 

 
 
 Clearly most of the energy to be gained from nuclear fusion occurs by the 
conversion of hydrogen to helium and less than one-half of that energy can be 
obtained by all other fusion processes that carry helium to iron. Nevertheless, .7 
percent of Mc2 is a formidable supply of energy. Table 3.2 is a summary of the 
energy that one could consider as being available to the sun. All these entries are 
generous upper limits. For example, the sun rotates at less than .5 percent of its 
critical velocity, it was never composed of 100 percent hydrogen and will begin to 
change significantly when a fraction of the core hydrogen is consumed, and not all 
the gravitational energy could ever be converted to energy for release. In any event, 
only nuclear processes hold the promise of providing the solar luminosity for the 
time required to bring about agreement with the age of the solar system as derived 
from rocks and meteorites. However, the time scales of Table 3.2 are interesting 
because they provide an estimate of how long the various energy sources could be 
expected to maintain some sort of equilibrium configuration. 
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3.2   Time Scales 
 
One of the most useful notions in stellar astrophysics for establishing an intuitive feel 
for the significance of various physical processes is the time required for those 
processes to make a significant change in the structure of the star. To enable us to 
estimate the relative importance of these processes, we shall estimate the time scales 
for several of them. In Chapter 2 we used the free-fall time of the sun to establish the 
fact that the sun can be considered to be in hydrostatic equilibrium. The statement 
was made that this time scale was essentially the same as the dynamical time scale. 
So let us now turn to estimating the time required for dynamical forces to change a 
star. 
 
  a   Dynamical Time Scale 
 
  The Virial theorem of Chapter 1 [equation (1.2.34)] provides us with 
a ready way of estimating the dynamical time scale, for in the form given, it must 
hold for all 1/r2 forces. Consider a star which is not in equilibrium because the 
internal energy is too low. As it enters the non-equilibrium condition, the star's 
kinetic energy will also be small. Thus, the Virial theorem would require 

                                      (3.2.1) 
implying a rapid collapse. If we take as an average value for the accelerative change 
in the moment of inertia 

                                            (3.2.2) 
where td is the dynamical time by definition, then we get 

                              (3.2.3) 
or 

                                     (3.2.4) 
 Now we compare this to the free-fall time obtained by direct integration of     

                                       (3.2.5) 
remembering that, since the star is "free-falling", M(r) will always be the mass 
interior to r. Thus, a surface point will always be affected by the total mass M. With 
some attention to the boundary conditions [see equations (5.2.12) through (5.2.17)], 
direct integration yields a free-fall time of 
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                       (3.2.6) 
which is essentially the same (within about a factor of 1.4) as the dynamical time.  
  
 Although we considered a star having zero pressure in order to derive both 
those time scales, the situation would not be significantly different if some pressure 
did exist. While a collapse will cause an increase in the pressure, the Virial theorem 
assures us that the gravitational energy will always exceed the internal energy of the 
gas unless there is a change in the equation of state resulting in a sudden increase in 
the internal energy. However, for the interior of the star to adjust to the collapse, it is 
necessary for information regarding the collapse to be communicated throughout the 
star. This will be accomplished by pressure waves which travel at the speed of sound. 
The sound crossing time is 

                (3.2.7) 
For a monatomic gas γ = 5/3. Hence 

                               (3.2.8) 
We may estimate the mean temperature for a uniform density sphere from the 
integral theorems [equations (2.2.4) and (2.2.7)] and obtain 
 

                                         (3.2.9) 
 Although the sound crossing time is somewhat larger than the free-fall and 
dynamical time scales, they are all of the same order of magnitude, ( )GM

R3 . This is 
about 27 min for the sun. The similar magnitude for these times is to be expected 
since they have a common origin in dynamical phenomena. So we have finally 
justified our statement in Chapter 2 that any departure from hydrostatic equilibrium 
will be resolved in about 20 min. This short time scale is characteristic of the 
dynamical time scale; it is generally the shortest of all the time scales of importance 
in stars. 
 
  b   Kelvin-Helmholtz (Thermal) Time Scale 
 
  Now we turn to some of considerations that led Lord Kelvin to reject 
the Darwinian theory of evolution. These involve the gravitational heating of the sun. 
If you imagine the early phases of a star's existence, when the internal temperature is 
insufficient to ignite nuclear fusion, then you will have the physical picture of a 
cloud of gas which is slowly contracting and is thereby being heated. Ultimately 
 62



3 ⋅ Sources and Sinks of Energy 
 

  

some of the energy generated by this contraction will be released from the stellar 
surface in the form of photons. As long as the process is slow compared to the 
dynamical time scale for the object, the Virial theorem in the form of equation 
(1.2.35) will hold and <T> ≈ 0. Thus 
 

 ½<Ω> = - <U>                                         (3.2.10) 
 
which implies that one-half of the change in the gravitational energy will go into 
raising the internal kinetic energy of the gas. The other half is available to be radiated 
away. This was the mechanism that Lord Kelvin proposed was responsible for 
providing the solar luminosity and he suggested a lifetime for such a mechanism to 
be simply the time required for the luminosity to result in a loss of energy equal to 
the present gravitational energy. If we estimate the latter by assuming that the star of 
interest is of uniform density, then 

                                        (3.2.11) 
 
 This is known as the Kelvin-Helmholtz gravitational contraction time, and it 
is the same as the lifetime obtained from the gravitational energy given in the 
previous section. Since the star is simply cooling off and having its internal energy 
re-supplied by gravitational contraction, some authors refer to this time scale as the 
thermal time scale. More properly, one could define the thermal time scale tth as the 
time required for the luminosity to result in an energy loss equal to the internal heat 
energy, and then one could relate that to the Kelvin-Helmholtz time by means of the 
Virial theorem. That is, 

                   (3.2.12) 
Thus, we see that the two time scales are of the same order of magnitude differing 
only by a factor of 2 for a monatomic gas. For the sun, both time scales are of the 
order of 1011 times longer than the dynamical time. In general the thermal time scale 
is very much longer than the dynamical time scale. The thermal time scale is the time 
over which thermal instabilities will be resolved, and so they are always less 
important than dynamical instabilities. 
 
  c   Nuclear (Evolutionary) Time Scale 
   
  In the beginning of this section we estimated the lifetime of the sun 
which could result from the dissipation of various sources of stored energy. By far 
the most successful at providing a long life was nuclear energy. The conversion of 
hydrogen to iron provided for a lifetime of some 140 billion years. However, in 
practice, when about 10 percent of the hydrogen is converted to helium in stars like 
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the sun, major structural changes will begin to occur and the star will begin to 
evolve. We can define a time scale for these events in a manner analogous to our 
other time scales as  

                                          (3.2.13) 
where Kn is just the fraction of the rest mass available to a particular nuclear process. 
While evolutionary changes often occur in one-tenth of the nuclear time scale, some 
stars show no significant change in less than 0.99tn. While in the terminal phases of 
some stars' lives the nuclear time scale becomes rather shorter than the thermal time 
scale and conceivably shorter than the dynamical time scale, for the type of stars we 
will be considering the nuclear time scale is usually very much longer than the other 
two. Certainly for main sequence stars we may observe that 

                           (3.2.14) 
 It is important to understand that the time scales themselves may change 
with time. The nuclear time scale will depend on the nature of the available 
nuclear fuel. However, the time scales do indicate the time interval over which 
you may regard their respective processes as approximately constant. They are 
useful, for they are easy to estimate, and they indicate which processes within the 
star will be important in determining its structure at any given time. 
 
3.3    Generation of Nuclear Energy 
 
We have established that the most important source for energy in the sun results 
from nuclear processes. Therefore, it is time that we look more closely at the 
details of those processes with a view of quantifying the dependence of the energy 
generation rate on the local values of the state variables. During the last 50 years, 
great strides have been made in understanding the details of nuclear interactions. 
They have revealed themselves to be remarkably varied and complex. We do not 
attempt to delve into all these details; rather we sketch those processes of primary 
importance in determining the structure of the star during the majority of its 
lifetime. We will leave to others to describe the spectacular nuclear pyrotechnics 
which occur during the terminal phases of the evolution of massive stars. Indeed, 
the equilibrium processes that occur in the terminal phases of stellar evolution, 
giving rise to most of the heavier elements, are beyond the scope of this book. 
Nor do we attempt to develop a complete, detailed quantum theory of nuclear 
energy production. Those who thirst after that specific knowledge are referred to 
the excellent survey by Cox and Giuli2 and other references at the end of this 
chapter. Instead, we concentrate on the physical principles which govern the 
production of energy by nuclear fusion. 
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  a   General Properties of the Nucleus 
 
  The notion that the atom can be viewed as being composed of a 
nucleus surrounded by a cloud of electrons which are confined to shells led to a 
very successful theory of atomic spectra. A very similar picture can be postulated 
for the nucleus itself, namely, that nucleons are arranged in shells within the 
nucleus and undergo transitions from one excited state (shell) to another subject 
to the same sort of selection rules that govern atomic transitions. The origin of the 
shell structure of any nucleus is that nucleons are fermions and therefore must 
obey the Pauli Exclusion Principle, just as the atomic electrons do. Thus, only two 
protons or two neutrons may occupy a specific cell in phase space (protons and 
neutrons have the same spin as electrons, so each species can have two of its kind 
in a quantum state characterized by the spatial quantum numbers). 
 
 However, the nucleons are much more tightly bound in the nucleus than 
the electrons in the atom. Whereas the typical ionization energy of an atom can be 
measured in tens to thousands of electron volts, the typical binding energy of a 
nucleon in the nucleus is several million electron volts. This large binding energy 
and the Pauli Exclusion Principle can be used to explain the stability of the 
neutron in nuclei. Although free neutrons beta-decay to protons (and an electron 
and an electron antineutrino) with a half-life of about 10 min, neutrons appear to 
be stable when they are in nuclei. If neutrons did decay, the resulting proton 
would have to occupy one of the least tightly bound proton shells, which 
frequently costs more energy than is liberated by the beta decay of the neutron. 
Thus, unless the neutron decay can provide sufficient energy for the decay 
products to be ejected from the nucleus, the neutron must remain in the nucleus as 
a stable entity. 
 
 In general, for a nucleus to be stable, its mass must be less than the sum of 
the masses of any possible combination of its constituents. Thus, Li5 is not stable, 
whereas He4 is. A more detailed explanation of the reasons for the stability or 
instability of a particular nucleus requires a considerably more detailed discussion 
of nuclear interactions and nuclear structure than is consistent with the scope of 
this book. However, note that the instability of mass-5 nuclei posed one of the 
greatest barriers of the century to the understanding of the evolution of stars. The 
nuclear evolution beyond mass 5 was finally solved by Fred Hoyle, who showed 
that the triple-a process, which we consider later, could actually initiate synthesis 
of all the nuclei heavier than mass 12. 
 
 Before we turn to the specifics of nuclear energy production, it is worth 
saying something about notation. Consider the reaction where a particle a hits a 
nucleus X, producing a nucleus ϒ and other particle(s) b. In other words,  
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                                               (3.3.1) 
Such a reaction can be written X(a,b) ϒ. Usually for such a reaction to happen, it 
must be exothermic. That is, the rest energy of the initial constituents of the 
reaction must exceed that of the products. 

                                (3.3.2) 
 
 
  b   The Bohr Picture of Nuclear Reactions 
 
  Although quantum mechanics formally describes the transition from 
the initial to the final state, it is convenient to break down the process and to say that 
a compound nucleus is formed by the collision and subsequently decays to the 
reaction products. With this assumption, a reaction can be viewed as consisting of 
two steps 

                                     (3.3.3) 
where C* is the compound nucleus and the asterisk indicates that it is in an excited 
state. The compound nucleus can decay by various modes which have these 
convenient physical interpretations: 

                (3.3.4) 
  
 Elastic scattering simply involves a particle "bouncing off" the nucleus in 
such a manner that the momentum and kinetic energy of both the constituents are 
conserved. However, inelastic scattering results in the nucleus being left in an 
excited state at the expense of the kinetic energy of the reactants. Particle emission is 
the process most often associated with nuclear reactions. The results of the 
interaction leave both reactants changed. Under certain conditions, the Bohr picture 
fails for these interactions since they proceed directly to the final state without the 
formation of a compound nucleus. In radiative capture, the compound nucleus 
decays from the excited state to a stable state by the emission of a photon. 
 
 The validity of this two-stage process, due to Neils Bohr, depends on the 
lifetime of the compound nucleus C*. The duration of a nuclear collision can be 
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characterized by the time it takes for the colliding particle to cross the nucleus. For 
typical nuclear radii and relative collision speeds of, say 0.1c, this is about 10-21 s. If 
the lifetime of the compound nucleus is long compared to this crossing time, you 
may assume that the nucleons of the compound nucleus have undergone many 
"collisions" and that the interaction energy has been statistically redistributed among 
them. In short, the compound nucleus will have reached statistical equilibrium and 
reside in a well defined state. In some sense, the compound nucleus can be said to 
exist. This effectively separates the details of the C* → ϒ + b reaction from those of 
the a + X → C* reaction. One might say that C* will have 'forgotten' about its birth. 
  
 More properly, the statistical equilibrium state of C* is independent of the 
approach to that state. This was the case in Chapter 1 where we considered the 
establishment of statistical equilibrium for a variety of gases. It will also be the case 
when we consider the details of absorption and reemission of photons by atoms 
much later. Another way of stating this condition is to say that the average distance 
between collisions with the nucleons (the mean free path) is much less than the size 
of the nucleus. Experimentally, this appears to be true for collision energies below 50 
Mev. Thus, if the energy is shared among more than a half dozen nucleons, any 
given nucleon will not have sufficient energy to exceed the binding energy and 
escape. The result is the formation of a stable nucleus by means of radiative capture. 
 

 
 

 Figure 3.1 shows a typical damping, or dispersion profile. A 
marked increase in the interaction probability occurs in the vicinity 
of the resonance energy E . The width of the curve is characterized 
by the damping constant Γ.    
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 By analogy to the photoexcitation of atoms, called bound-bound transitions, 
there exist resonances for nuclear reactions, particularly at low energy. A resonance 
is an enhancement in the probability that a nuclear reaction will take place. 
Classically, one may view these as collision energies which excite particular nucleon 
shell transitions within the nucleus. These energies will be particularly favored for 
interactions and are known as the resonance energies. The probability density 
distribution with energy is characterized by a function known as a damping, or 
dispersion, profile whose form we will derive in some detail when we consider the 
formation of spectral lines in Chapter 13. All that need be understood is the general 
topological shape (see Figure 3.1) and the fact that the width of the probability 
maximum can be characterized by a width in energy usually denoted by Γ. As long 
as the resonance is a simple one and not blended with others, the energy at which the 
peak of the probability distribution occurs is known as the resonance energy. 
 
  c   Nuclear Reaction Cross Sections 
 
  The words cross section have come to have a somewhat generic 
meaning in nuclear physics as a measure of the likelihood of a particular reaction 
taking place, in the sense that the larger the cross section, the greater the probability 
that the reaction will happen. The simplest way to visualize a reaction cross section is 
to consider the classical notion of a collision cross section. If you were to shoot a 
bullet through a swarm of hornets, the probability of hitting a particular hornet would 
be proportional to the cross-sectional area of the hornet as seen by the bullet. Of 
course, the cross-sectional area of the bullet will also play a role in determining the 
likelihood of hitting the hornet. The combined effect of these two cross-sectional 
areas is said to represent the geometric cross section of the collision. In a similar 
manner, one may interpret a nuclear reaction cross section as the "effective" 
geometric cross-sectional area of a collision between the particle and the nucleus. 
Remember that this is not a simple geometric cross section unless you are 
comfortable with the notion that the nucleus appears to have very different "sizes", as 
seen by the colliding particle, depending on the particle's energy. 
 
 In practice, the nuclear cross section will depend on all the quantities that 
govern the interaction between the colliding particles and the nucleons in the shell 
structure of the nucleus. The detailed calculation is usually very complicated, 
depending on the approximate wave function of the nucleus and the wave function of 
the colliding particle. A common approximation formula for nuclear cross sections 
known, as the Breit-Wigner 1-level dispersion formula, is  

                     (3.3.5) 
where 
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 (3.3.6) 
   
 We will make no attempt to derive this result. However, we do try to show 
that the result at least contains the right sort of terms and is reasonable. The term 

is essentially the geometric cross section of the colliding particle as it is related 
to the particle's de Broglie wavelength. The angular momentum term (2 +1) is a 
measure of the impact parameter and the energy. As l  increases, so does the impact 
parameter. For constant angular momentum, an increasing impact parameter will 
mean a decreasing collision energy, implying a net increase of the collision 
probability. However, as the impact parameter increases and the collision energy 
drops, the probability that the colliding particle will be able to overcome the coulomb 
barrier decreases drastically. Thus, we need be concerned only with  = 0, or 1.  The 
term transmission function of particle a includes the probability that the particle will 
penetrate the coulomb barrier of the nucleus. The parameter ω allows for the spin-
spin interactions of the nucleus and the particle and is of the order unity. Function 
ϒ(E) includes the effects of resonances and from the dispersion curve in Figure 3.1 
can clearly be a very strong function of collision energy E. The spin degeneracy 
parameter S is generally 1 except when  a and X are the same kind of particle and 
also have zero spin; then S = 2. Finally, G(b) is a measure of the probability that 
particle b will be created from the compound nucleus as opposed to some other 
possibility.  Now that we have the nuclear reaction cross sections, we have to 

2Dπ
l

l
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determine the rate at which collisions will occur. Then we will be able to find the 
energy produced by stellar material. 
  
  d   Nuclear Reaction Rates 
 
 The reaction cross section of the previous section can be measured as a 
function of the collision energy (and some atomic constants) alone and therefore can 
be written as a function of the particle's velocity v relative to the target. By 
resurrecting the geometric interpretation of the cross section, the number of particles 
crossing an area (colliding with the target) per unit time is just Nσ(v)v where N is the 
density of colliding particles (see Figure 3.2) 
 
  Consider collisions between two different kinds of particles with a number 
density in phase space of dN1 and dN2. To obtain the number of collisions per second 
per unit volume, we must integrate over all available velocity space. That is, we must 
sum over the collisions between particles so that the collision rate r is 
 

                      (3.3.7) 

 
  
 Figure 3.2 is a schematic representation of a collision between particle a 
and a target with a geometrical cross section σ. 

 
Let us assume that the velocity distributions of both kinds of particles are given by 
maxwellian velocity distributions 
 

                     (3.3.8) 
so that equation (3.3.7) becomes 
 

(3.3.9) 
 
If we transform to the center-of-mass coordinate system, assuming the velocity field 
is isotropic so that the triple integrals of equation (3.3.9) can be written as spherical 
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"velocity volumes", then we can rewrite equation (3.3.9) in terms of the center of 
mass velocity v0 and the relative velocity v as 

(3.3.10) 
where 

                                 (3.3.11) 
The integral over v0 is analytic and is 

          (3.3.12) 
 which reduces equation (3.3.10) to  
 

       (3.3.13) 
Since the relative kinetic energy in the center of mass system is 2

2
1 vm~E = , we can 

rewrite equation (3.3.13) in terms of an average reaction cross section <σ(v)⋅v> so 
that 

                                        (3.3.14) 
where 

 (3.3.15) 
 
Thus <σ(v).v> is the "relative energy" weighted average of the collision probability 
of particle 1 with particle 2. When this average cross section is written, the explicit 
dependence on velocity is usually omitted, so that 

                                         (3.3.16) 
 If the collisions involve identical particles, then the number of distinct pairs 
of particles is N(N-1)/2 so the factor of N1N2 in equation (3.3.14) is replaced by N2/2. 
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If we call the energy produced per reaction Q, we can write the energy produced per 
gram of stellar material as 

                              (3.3.17) 
The number densities can be replaced with the more common fractional abundances 
by mass to get 

                          (3.3.18) 
where N0 is Avogadro's number. Since <σv> is a complicated function of 
temperature and must be obtained numerically, equation (3.3.18) is usually 
approximated numerically as 

                                          (3.3.19) 
where 

                       (3.3.20) 
  
 Here ν itself is very weakly dependent on the temperature. Most of the 
important energy production mechanisms have this form. Equation (3.3.19) 
expresses the energy generated for a specific energy generation mechanism in terms 
of the state variables T and p. This is what we were after. Formulas such as these, 
where ε0 has been determined, will enable us to determine the energy produced 
throughout the star in terms of the state variables. Before turning to the description of 
processes which impede the flow of this energy, let us consider a few of the specific 
nuclear reactions for which we have expressions of the type given by equation 
(3.3.20.) 
 
  e   Specific Nuclear Reactions 
 
  The nuclear reactions that provide the energy for main sequence stars 
all revolve on the conversion of hydrogen to helium. However, this is accomplished 
by a variety of ways. We may divide these ways into two groups. The first is known 
as the proton-proton cycle (p-p cycle) and it begins with the conversion of two 
hydrogen atoms to deuterium. Several possibilities occur on the way to the 
production of 4He. These alternate options are known as P2-P6 cycles. In addition to 
the proton-proton cycle, a series of nuclear reactions involving carbon, nitrogen, and 
oxygen also can lead to the conversion of hydrogen to helium with no net change in 
the abundance of C, N, and O. For this reason, it is known as the CNO cycle. These 
reactions and their side chains as given by Cox and Giuli2 are given in Table 3.3 
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 Besides the steps marked with asterisks, which denote reactions that occur by 
spontaneous decay and do not depend on local values of the state variables, the steps 
that are the important contributors to the energy supply have their contribution (their 
Q value) indicated. The energy of the neutrinos has not been included since they play 
no role in determining the structure of normal stars. When the p-p cycle dominates 
on the lower main sequence, most of the energy is produced by means of the P1 
cycle. The neutrino produced in the fifth step of the P2 cycle is the high energy 
neutrino which has been detected, but in unexpectedly low numbers, by the neutrino 
detection experiment of R. Davis in the Homestake Gold Mine. In general, the 
relative importance of the P1 cycle relative to P2 and P3 is determined by the helium 
abundance, since this governs the branching ratio at step 3 in the p-p cycle. If 4He is 
absent, it will not be possible to make 7Be by capture on 3He. 
 
 Virtually all the energy of the CNO cycle is produced by step 6 as the 
production of 12C from 15N is strongly favored. However, all the higher chains close 
with only the net production of 4He. The first stage of the P4 cycle is endothermic by 
18 keV so unless the density is high enough to produce a Fermi energy of 18 keV, 
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the reaction does not take place. This requires a density of ρ > 2×104 g/cm3 and so 
will not be important in main sequence stars. Once 3H is produced it can be 
converted to 4He by a variety of processes given in step 4. The last two are 
sometimes denoted P5 and P6, respectively, and are rare. 
 
 While the so-called triple-α process is not operative in main sequence stars, it 
does provide a major source of energy during the red-giant phase of stellar evolution. 
The extreme temperature dependence of the triple-a process plays a crucial role in 
the formation of low-mass red giants and, we shall spend some time with it later. The 
8Be* is unstable and decays in an extremely short time. However, if during its 
existence it collides with another 4He nucleus, 12C can form, which is stable. The 
very short lifetime for 8Be* basically accounts for the large temperature dependence 
since a very high collision frequency is required to make the process productive. 
 
 The exponent of the temperature dependence given in equation (3.3.20) and 
the constant ε0 both vary slowly with temperature. This dependence, as given by Cox 
and Giuli2 (p. 486), is shown in Table 3.4. 

 
  
 The temperature T6 in Table 3.4 is given in units of 106. Thus T6 = 1 is 106 K. 
It is a general property of these types of reaction rates that the temperature 
dependence "weakens" as the temperature increases. At the same time the efficiency 
ε0 increases. In general, the efficiency of the nuclear cycles rate is governed by the 
slowest process taking place. In the case of p-p cycles, this is always the production 
of deuterium given in step 1. For the CNO cycle, the limiting reaction rate depends 
on the temperature. At moderate temperatures, the production of 15O (step 4) limits 
the rate at which the cycle can proceed. However, as the temperature increases, the 
reaction rates of all the capture processes increase, but the steps involving inverse   β 
decay (particularly step 5), which do not depend on the state variables, do not and 
therefore limit the reaction rate. So there is an upper limit to the rate at which the 
CNO cycle can produce energy independent of the conditions which prevail in the 
star. However, at temperatures approaching a billion degrees, other reaction 
processes not indicated above will begin to dominate the energy generation and will 
circumvent even the beta-decay limitation. 
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 We have now determined the various sources of energy that are available to a 
star so that it can shine. Clearly the only viable source of that energy results from 
nuclear fusion. The condition for the production of energy by nuclear processes can 
occur efficiently only under conditions that prevail near the center of the star. From 
there, energy must be carried to the surface in some manner in order for the star to 
shine. In the next chapter we investigate how this happens and describe the 
mechanisms that oppose the flow. 
 
 
Problems 
 
1. Using existing models or a current model interior program, find the expected 

solar neutrino flux (i.e., the flux of 8B neutrinos) as a function of solar age 
from the zero age model to the present. 

 
2. What polytrope(s) would you use to describe the structure of the sun? How 

 well do they match the standard solar model? 
 
3. Consider a gas sphere that undergoes a pressure-free collapse. Let the free-

fall time for material at the surface R be tf . Find the mass distribution for an 
isothermal sphere and polytropes with indices n of 3, and 1.5 at:   

 a  t = 0.1tf   , 
  b  t = 0.5tf  , and 
            c t = 0.8tf  . 
 
4. Use the Virial theorem to find the fundamental radial pulsation period for a 

star where the equation of state is P = Kpγ. Find the behavior of this period as 
 γ → ∞. 

 
5. Find the mass of a main sequence star for which the energy production by the 

p-p cycle equals that of the CNO cycle. 
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I have provided the bare minimum information regarding nuclear energy generation 
in this chapter. Further reading should be done in: 
 

Clayton, D. D.: Principles of Stellar Evolution and Nucleosynthesis, 
McGraw- Hill, New York, 1968 Chaps. 4, 5, pp. 283-606. 
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