
© Copyright 2004 
 
 

1 
 
 

Introduction and Mathematics Review 
 
 

1.1 The Nature of Celestial Mechanics 
 
 Celestial mechanics has a long and venerable history as a discipline. It 
would be fair to say that it was the first area of physical science to emerge from 
Newton's theory of mechanics and gravitation put forth in the Principia. It was 
Newton's ability to describe accurately the motion of the planets under the 
concept of a single universal set of laws that led to his fame in the seventeenth 
century. The application of Newtonian mechanics to planetary motion was honed 
to so fine an edge during the next two centuries that by the advent of the twentieth 
century the description of planetary motion was refined enough that the departure 
of prediction from observation by 43 arcsec in the precession of the perihelion of 
Mercury's orbit was a major factor in the replacement of Newton's theory of 
gravity by the General Theory of Relativity.  
 
 At the turn of the century no professional astronomer would have been 
considered properly educated if he could not determine the location of a planet in 
the local sky given the orbital elements of that planet. The reverse would also 
have been expected. That is, given three or more positions of the planet in the sky 
for three different dates, he should be able to determine the orbital elements of 
that planet preferably in several ways. It is reasonably safe to say that few 
contemporary astronomers could accomplish this without considerable study. The 
emphasis of astronomy has shifted dramatically during the past fifty years. The 
techniques of classical celestial mechanics developed by Gauss, Lagrange, Euler 
and many others have more or less been consigned to the history books. Even in 
the situation where the orbits of spacecraft are required, the accuracy demanded is 
such that much more complicated mechanics is necessary than for planetary 
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motion, and these problems tend to be dealt with by techniques suited to modern 
computers. 
 
 However, the foundations of classical celestial mechanics contain 
elements of modern physics that should be understood by every physical scientist. 
It is the understanding of these elements that will form the primary aim of the 
book while their application to celestial mechanics will be incidental. A mastery 
of these fundamentals will enable the student to perform those tasks required of 
an astronomer at the turn of the century and also equip him to deal with more 
complicated problems in many other fields. 
 
 The traditional approach to celestial mechanics well into the twentieth 
century was incredibly narrow and encumbered with an unwieldy notation that 
tended to confound rather than elucidate. It wasn't until the 1950s that vector 
notation was even introduced into the subject at the textbook level. Since 
throughout this book we shall use the now familiar vector notation along with the 
broader view of classical mechanics and linear algebra, it is appropriate that we 
begin with a review of some of these concepts. 
 
1.2  Scalars, Vectors, Tensors, Matrices and Their Products 
 
 While most students of the physical sciences have encountered scalars and 
vectors throughout their college career, few have had much to do with tensors and 
fewer still have considered the relations between these concepts. Instead they are 
regarded as separate entities to be used under separate and specific conditions. 
Other students regard tensors as the unfathomable language of General Relativity 
and therefore comprehensible only to the intellectually elite. This latter situation 
is unfortunate since tensors are incredibly useful in the wide range of modern 
theoretical physics and the sooner one vanquishes his fear of them the better. 
Thus, while we won't make great use of them in this book, we will introduce them 
and describe their relationship to vectors and scalars. 
 

a. Scalars 
 

 The notion of a scalar is familiar to anyone who has completed a freshman 
course in physics. A single number or symbol is used to describe some physical 
quantity. In truth, as any mathematician will tell you, it is not necessary for the 
scalar to represent anything physical. But since this is a book about physical 
science we shall narrow our view to the physical world. There is, however, an 
area of mathematics that does provide a basis for defining scalars, vectors, etc. 
That area is set theory and its more specialized counterpart, group theory. For a 
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collection or set of objects to form a group there must be certain relations between 
the elements of the set. Specifically, there must be a "Law" which describes the 
result of "combining" two members of the set. Such a "Law" could be addition. 
Now if the action of the law upon any two members of the set produces a third 
member of the set, the set is said to be "closed" with respect to that law. If the set 
contains an element which, when combined under the law with any other member 
of the set, yields that member unchanged, that element is said to be the identity 
element. Finally, if the set contains elements which are inverses, so that the 
combination of a member of the set with its inverse under the "Law" yields the 
identity element, then the set is said to form a group under the "Law". 
 
 The integers (positive and negative, including zero) form a group under 
addition. In this instance, the identity element is zero and the operation that 
generates inverses is subtraction so that the negative integers represent the inverse 
elements of the positive integers. However, they do not form a group under 
multiplication as each inverse is a fraction. On the other hand the rational 
numbers do form a group under both addition and multiplication. Here the 
identity element for addition is again zero, but under multiplication it is one. The 
same is true for the real and complex numbers. Groups have certain nice 
properties; thus it is useful to know if the set of objects forms a group or not. 
Since scalars are generally used to represent real or complex numbers in the 
physical world, it is nice to know that they will form a group under multiplication 
and addition so that the inverse operations of subtraction and division are defined. 
With that notion alone one can develop all of algebra and calculus which are so 
useful in describing the physical world. However, the notion of a vector is also 
useful for describing the physical world and we shall now look at their relation to 
scalars. 
 
 
 b. Vectors 
 
 A vector has been defined as "an ordered n-tuple of numbers". Most find 
that this technically correct definition needs some explanation. There are some 
physical quantities that require more than a single number to fully describe them. 
Perhaps the most obvious is an object's location in space. Here we require three 
numbers to define its location (four if we include time). If we insist that the order 
of those three numbers be the same, then we can represent them by a single 
symbol called a vector. In general, vectors need not be limited to three numbers; 
one may use as many as is necessary to characterize the quantity. However, it 
would be useful if the vectors also formed a group and for this we need some 
"Laws" for which the group is closed. Again addition and multiplication seem to 
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be the logical laws to impose. Certainly vector addition satisfies the group 
condition, namely that the application of the "law" produces an element of the set. 
The identity element is a 'zero-vector' whose components are all zero. However, 
the commonly defined "laws" of multiplication do not satisfy this condition. 
 
 Consider the vector scalar product, also known as the inner product, which 
is defined as 

∑==•
i

iiBAcBA
rr

    (1.2.1) 

Here the result is a scalar which is clearly a different type of quantity than a 
vector. Now consider the other well known 'vector product', sometimes called the 
cross product, which in ordinary Cartesian coordinates is defined as  
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This appears to satisfy the condition that the result is a vector. However as we 
shall see, the vector produced by this operation does not behave in the way in 
which we would like all vectors to behave. 
 
 Finally, there is a product law known as the tensor, or outer product that is 
useful to define as 
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       (1.2.3) 

Here the result of applying the "law" is an ordered array of (n x m) numbers 
where n and m are the dimensionalities of the vectors A

r
and B

r
respectively. Such 

a result is clearly not a vector and so vectors under this law do not form a group. 
In order to provide a broader concept wherein we can understand scalars and 
vectors as well as the results of the outer product, let us briefly consider the 
quantities knows as tensors. 
 
 c. Tensors and Matrices 
 
 In general a tensor has components or elements. N is known as the 
dimensionality of the tensor by analogy with the notion of a vector while n is 
called the rank. Thus vectors are simply tensors of rank unity while scalars are 
tensors of rank zero. If we consider the set of all tensors, then they form a group 
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under addition and all of the vector products. Indeed the inner product can be 
generalized for tensors of rank m and n. The result will be a tensor of rank 

nm − . Similarly the outer product can be so defined that the outer product of 

tensors with rank m and n is a tensor of rank nm + . 
 
 One obvious way of representing tensors of rank two is by denoting them 
as matrices. Thus the arranging of the components in an (N x N) array will 
produce the familiar square matrix. The scalar product of a matrix and vector 
should then yield a vector by 

2N
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      ,                                   (1.2.4) 

while the outer product would result in a tensor of rank three from 
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          .                               (1.2.5) 

 
An important tensor of rank two is called the unit tensor whose elements are the 
Kronecker delta and for two dimensions is written as 
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=1         .                                   (1.2.6) 

Clearly the scalar product of this tensor with a vector yields the vector itself. 
There is a parallel tensor of rank three known as the Levi-Civita tensor (or more 
correctly tensor density) which is a three index tensor whose elements are zero 
when any two indices are equal. When the indices are all different the value is +l 
or -1 depending on whether the index sequence can be obtained by an even or odd 
permutation of 1,2,3 respectively. Thus the elements of the Levi-Civita tensor can 
be written in terms of three matrices as  
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One of the utilities of this tensor is that it can be used to express the vector cross 
product as follows 

∑∑ =ε=•ε=×
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  .           (1.2.8)  
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As we shall see later, while the rule for calculating the rank correctly implies that 
the vector cross product as expressed by equation (1.2.8) will yield a vector, there 
are reasons for distinguishing between this type of vector and the normal 
vectors . These same reasons extend to the correct naming of the Levi-
Civita tensor as the Levi-Civita tensor density. However, before this distinction 
can be made clear, we shall have to understand more about coordinate 
transformations and the behavior of both vectors and tensors that are subject to 
them. 

B and A
rr

 
 The normal matrix product is certainly different from the scalar or outer 
product and serves as an additional multiplication "law" for second rank tensors. 
The standard definition of the matrix product is 
 

                                                       .  (1.2.9) 
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Only if the matrices can be resolved into the outer product of two vectors so that 
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 ,                           (1.2.10) 

 
can the matrix product be written in terms of the products that we have already 
defined -namely 

)(ba β•α=
rrrr

AB        .                               (1.2.11) 
 
 There is much more that can, and perhaps should, be said about matrices. 
Indeed, entire books have been written about their properties. However, we shall 
consider only some of those properties within the notion of a group. Clearly the 
unit tensor (or unit matrix) given by equation (1.2.6) represents the unit element 
of the matrix group under matrix multiplication. The unit under addition is simply 
a matrix whose elements are all zero, since matrix addition is defined by 
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Remember that the unit element of any group forms the definition of the inverse 
element. Clearly the inverse of a matrix under addition will simply be that matrix 
whose elements are the negative of the original matrix, so that their sum is zero. 
However, the inverse of a matrix under matrix multiplication is quite another 
matter. We can certainly define the process by 
 

1AA 1 =−     ,                                     (1.2.13) 
 
but the process by which  is actually computed is lengthy and beyond the 
scope of this book. We can further define other properties of a matrix such as the 
transpose and the determinant. The transpose of a matrix A with elements Aij is 
just 

1A−

ijA=TA  ,                        (1.2.14) 
 
while the determinant is obtained by expanding the matrix by minors as is done in 
Kramer's rule for the solution of linear algebraic equations. For a (3 x 3) matrix, 
this would become  
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 .      (1.2.15) 

 
The matrix is said to be symmetric if jiij AA = . Finally, if the matrix elements are 
complex so that the transpose element is the complex conjugate of its counterpart, 
the matrix is said to be Hermitian. Thus for a Hermitian matrix H the elements 
obey 

jiij H~H =    ,                       (1.2.16) 
 
where jiH~ is the complex conjugate of   ijH  .
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1.3  Commutativity, Associativity, and Distributivity 
 
 Any "law" that is defined on the elements of a set may have certain 
properties that are important for the implementation of that "law" and the resultant 
elements. For the sake of generality, let us denote the "law" by ^, which can stand 
for any of the products that we have defined. Now any such law is said to be 
commutative if 

A^BB^A =         .                                (1.3.1) 
 
Of all the laws we have discussed only addition and the scalar product are 
commutative. This means that considerable care must be observed when using the 
outer, vector-cross, or matrix products, as the order in which terms appear in a 
product will make a difference in the result. 
 
 Associativity is a somewhat weaker condition and is said to hold for any 
law when 

)C^B(^AC)^B^A( =      .                            (1.3.2) 
 
In other words the order in which the law is applied to a string of elements doesn't 
matter if the law is associative. Here addition, the scalar, and matrix products are 
associative while the vector cross product and outer product are, in general, not. 
Finally, the notion of distributivity involves the relation between two different 
laws. These are usually addition and one of the products. Our general purpose law 
^ is said to be distributive with respect to addition if 
 

)C^A()B^A()CB(^A +=+ .                            (1.3.3) 
 
This is usually the weakest of all conditions on a law and here all of the products 
we have defined pass the test. They are all distributive with respect to addition. 
The main function of remembering the properties of these various products is to 
insure that mathematical manipulations on expressions involving them are done 
correctly. 
 
1.4 Operators 
 
 The notion of operators is extremely important in mathematical physics 
and there are entire books written on the subject. Most students usually first 
encounter operators in calculus when the notation [d/dx] is introduced to denote 
the derivative of a function. In this instance the operator stands for taking the limit 
of the difference between adjacent values of some function of x divided by the 
difference between the adjacent values of  x  as that difference tends toward zero. 
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This is a fairly complicated set of instructions represented by a relatively simple 
set of symbols. The designation of some symbol to represent a collection of 
operations is said to represent the definition of an operator. Depending on the 
details of the definition, the operators can often be treated as if they were 
quantities and subjected to algebraic manipulations. The extent to which this is 
possible is determined by how well the operators satisfy the conditions for the 
group on which the algebra or mathematical system in question is defined. 
 
 We shall make use of a number of operators in this book, the most 
common of which is the "del" operator or "nabla". It is usually denoted by the 
symbol ∇ and is a vector operator defined in Cartesian coordinates as 
 

z
k̂

y
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x
î

∂
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+
∂
∂

+
∂
∂

≡∇    .                              (1.4.1) 

 

 
Figure 1.1 schematically shows the divergence of a vector field. In the 
region where the arrows of the vector field converge, the divergence is 
positive, implying an increase in the source of the vector field. The 
opposite is true for the region where the field vectors diverge. 

 
This single operator, when combined with the some of the products defined 
above, constitutes the foundation of vector calculus. Thus the divergence, 
gradient, and curl are defined as 
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                                          (1.4.2) 

respectively. If we consider A
r

 to be a continuous vector function of the 
independent variables that make up the space in which it is defined, then we may 
give a physical interpretation for both the divergence and curl. The divergence of 
a vector field is a measure of the amount that the field spreads or contracts at 
some given point in the space (see Figure 1.1). 

 
Figure 1.2 schematically shows the curl of a vector field. The direction of 
the curl is determined by the "right hand rule" while the magnitude 
depends on the rate of change of the x- and y-components of the vector 
field with respect to y and x. 
 

 The curl is somewhat harder to visualize. In some sense it represents the 
amount that the field rotates about a given point. Some have called it a measure of 
the "swirliness" of the field. If in the vicinity of some point in the field, the 
vectors tend to veer to the left rather than to the right, then the curl will be a 
vector pointing up normal to the net rotation with a magnitude that measures the 
degree of rotation (see Figure 1.2). Finally, the gradient of a scalar field is simply 
a measure of the direction and magnitude of the maximum rate of change of that 
scalar field (see Figure 1.3). 
 
 With these simple pictures in mind it is possible to generalize the notion of 
the Del-operator to other quantities. Consider the gradient of a vector field. This 
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represents the outer product of the Del-operator with a vector. While one doesn't 
see such a thing often in freshman physics, it does occur in more advanced 
descriptions of fluid mechanics (and many other places). We now know enough to 
understand that the result of this operation will be a tensor of rank two which we 
can represent as a matrix.  
 

 
        Figure 1.3 schematically shows the gradient of the scalar dot-density in 

the form of a number of vectors at randomly chosen points in the scalar 
field. The direction of the gradient points in the direction of maximum 
increase of the dot-density, while the magnitude of the vector indicates 
the rate of change of that density. 

 
What do the components mean? Generalize from the scalar case. The nine 

elements of the vector gradient can be viewed as three vectors denoting the 
direction of the maximum rate of change of each of the components of the 
original vector. The nine elements represent a perfectly well defined quantity and 
it has a useful purpose in describing many physical situations. One can also 
consider the divergence of a second rank tensor, which is clearly a vector. In 
hydrodynamics, the divergence of the pressure tensor may reduce to the gradient 
of the scalar gas pressure if the macroscopic flow of the material is small 
compared to the internal speed of the particles that make up the material.  
 
 Thus by combining the various products defined in this chapter with the 
familiar notions of vector calculus, we can formulate a much richer description of 
the physical world. This review of scalar and vector mathematics along with the 
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all-too-brief introduction to tensors and matrices will be useful, not only in the 
development of celestial mechanics, but in the general description of the physical 
world. However, there is another broad area of mathematics on which we must 
spend some time. To describe events in the physical world, it is common to frame 
them within some system of coordinates. We will now consider some of these 
coordinates and the transformations between them. 
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Common Del-Operators 

 
Cylindrical   Coordinates 

 
Orthogonal Line Elements 
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Components of the Gradient 
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Components of the Curl 
 

⎥⎦
⎤

⎢⎣
⎡

ϑ∂
∂

−
∂

∂
=×∇

∂
∂

−
∂
∂

=×∇

∂
∂

−
ϑ∂

∂
=×∇

ϑ

ϑ

ϑ

r
z

zr

z
r

A
r

)rA(
r
1)A(

r
A

z
A)A(

z
AA

r
1)A(

r

v

r

 

 
 
 
 

Spherical   Coordinates 
 
Orthogonal Line Elements 
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Components of the Gradient 
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Components of the Curl  
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 Chapter 1: Exercises 
 

1. Find the components of the vector )B(A
rr

×∇×∇= in spherical coordinates. 
 
2. Show that: 
 a.   )B(AB)A()A(BA)B()BA(

rrrrrrrrrr
•∇+∇•−•∇−∇•=××∇   . 

 
       b.   )B(A)A(B)BA(

rrrrrr
×∇•−×∇•=×•∇    . 

    
3. Show that: 
 )B(A)A(BB)A(A)B()BA(

rrrrrrrrrr
×∇×+×∇×+∇•+∇•=•∇   . 

 
4. If T is a tensor of rank 2 with components Ti j , show that   is a vector 

and find the components of that vector. 
T•∇

 
Useful Vector Identities 
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a ofLaplacian  a)a( 2 =∇≡∇•∇   .                                (a7) 
     
In Cartesian coordinates: 
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