
© Copyright 2004 

 
 

8 
 
 
 

The Dynamics of More Than Two Bodies 
 
 
 In Chapter 3 we established the general principles of Newtonian 
mechanics and the mathematical formalism for the determination of the equations 
of motion for the objects that make up an arbitrary mechanical system. We used 
those principles in Chapter 5 to describe the motion of two bodies under their 
mutual gravitational attraction. As we shall see, problems dealing with more than 
two bodies become extremely complicated and do not, in general, yield closed 
form solutions. The dynamical behavior of large systems of stars that seem to 
populate the central regions of galaxies is currently a problem of intense study 
three and a half centuries after Newton identified the principles that guide their 
motion. Before we even attempt to discuss systems consisting of a large number 
of objects, we shall discuss systems of three objects.  
 
8.1  The Restricted Three Body Problem 
 
 Certainly the next logical step after the solution of the two body problem 
is the addition of a third body. Yet even here we find that the general problem is 
unsolved. Nature seems to deal with the problem in a simple manner for there are 
many stellar systems consisting of three or more stars bound by their mutual 
gravitational attraction. However, in all of these systems, the objects seem to 
degenerate to a hierarchical succession of two body problems. For example, 
should the system contain three stars, two will be tightly bound orbiting as one 
would expect from the two body solution and the third will be found at a distance 
corresponding to many times the separation of the close orbiting pair. Four 
gravitationally bound stars always appear as a binary of binaries and so forth. It is 
generally believed that there are no stable orbits involving three comparable 
masses with comparable separations.  
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 The source of the difficulty in dealing with as few as three objects can be 
found in the notion of the integrals of the motion discussed in Chapter 5 (Sec 5.3). 
In any mechanics problem one always has the Hamiltonian, or the total energy, 
and the total angular momentum as integrals of the motion. These are quantities 
which will be constant throughout the motion of the members of the system 
wherever they may go. Since the angular momentum is a vector quantity, it has 
three linearly independent components, each of which serves as a constant of the 
motion. Thus the conservation of energy and angular momentum provide four 
constants that restrict the motion of the system. Taken together with the six 
constants that specify the uniform motion of the center of mass, there remain only 
two constants to completely determine the motion of a two body system. It is the 
quadratic nature of the force law that requires that solutions for the orbits will also 
be quadratic and thus if the orbits are bound they will be closed. This is not the 
case for other force laws, as is evidenced by the precession of the perihelion of 
Mercury's orbit resulting from the presence of masses other than the sun in the 
solar system. Mercury's orbit isn't quite elliptical and never exactly closes in 
space. Closure requires that the object return to the same physical location with 
the same velocity. Thus the last constant serves only to locate the particle in its 
orbit. 
 
 Since the general problem of three bodies will be described by a second 
order vector differential equation for each of the particles, there will be l8 
constants of motion. The conservation of angular momentum and energy together 
with the uniform motion of the center of mass will provide 10 constants leaving 
eight to be determined. Since the general potential affecting anyone of the objects 
will not be that of a single point mass we should not expect the orbits of the 
objects to close and we are left with eight arbitrary constants required to specify 
the problem. Thus the motion is in no way uniquely determined by the 
conservation laws of physics as was the case for the two body problem. To be 
sure the initial position and velocities of the components would provide the l8 
constants required for the unique solution of the motion since the laws of 
Newtonian mechanics are deterministic. But these initial values are not integrals 
of the motion. The parameters they specify are not constant during the motion of 
the members of the system. Thus while they provide a basis for calculating the 
motion of a specific system, they do not allow for a general solution. Since the 
general solution of the three body problem appears beyond our grasp, let us 
consider a simpler problem intermediate between the two body problem and the 
general three body problem. 
 
 The question of what is the most complicated problem in celestial 
mechanics that allows for a general solution has occupied some of the best 
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analytical minds of the past three centuries and continues to be of interest today. 
Consider two bodies of comparable but dissimilar masses in circular orbit about 
one another. Now introduce a third object of negligible mass. Here "negligible 
mass" means that it is affected by the presence of the other two objects, but does 
not exert sufficient force on either of the two so as to disturb their circular motion. 
It is then a reasonable question to inquire into the motion of this third object. Such 
a question is not entirely academic as this is an excellent approximation to the 
motion of a spacecraft in the earth-moon system. It is also a fair approximation to 
the motion of some asteroids influenced by the gravitational fields of the sun and 
Jupiter. This problem is called the circular restricted three body problem and its 
solution contains some surprising results.  
 
 a.  Jacobi's Integral of the Motion 
 
 We analyzed the two body problem in physical units, but we are free to 
choose any system of units we please. So let us measure mass in units such that 
the total mass of the system is unity. Then  
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We could then quite arbitrarily require the less massive of the orbiting pair. to 
have a mass µ so that 
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Remember that the third object in the system has essentially zero mass in that it 
doesn't contribute to the total mass of the system at any level that could be 
considered significant. Indeed, it behaves as a 'test particle' as described in 
Chapter 5. Now we are free to choose the units by which we measure time so 
instead of using seconds, let us measure time in units of the orbital period of the 
two significant objects about one another. For the earth and the sun this would be 
years multiplied by 2π. Such a choice requires that the attractive force between 
the objects be such that 

1}d/])1{[(k 2/13 =µ+µ−≡ω    .                            (8.1.3) 
 
 Now for the description of the motion of the third object, let us choose a 
Cartesian coordinate system with an origin at the center of mass and rotating with 
the uniform circular motion of the two non-negligible masses. Thus the least 
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massive object will be located at x1 and the more massive one at x2. The third 
object will have coordinates [x,y,z] so that its radial distance from the two objects 
can be represented by 
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In an inertial coordinate system the total energy would simply be 
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However, if the coordinate system is rotating, the kinetic energy will be reduced 
by the rotational motion and, to conserve energy, we will have to increase the 
potential energy by a corresponding amount. Since the orbits of ml and m2 are 
circular, their contribution to the kinetic and potential energies of the system will 
separately remain constant. Thus energy conservation can be reduced to the 
energy of the small mass body constant. If we let the object have a mass ε, then 
the total energy of the small body is 
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Here v is the velocity measured in the rotating coordinate frame and the quantity 
)yx( 222

2
1 +εω is just the contribution from the rotational motion of the 
coordinate frame itself. Dividing out the negligible mass of the third body and 
taking ω = l, we can write 
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where C is some constant of the motion. This is known as Jacobi's integral and is 
nothing more than the energy integral for the third body. Now it is clear why the 
orbits of the other two bodies were assumed to be circular. Still the equations of 
motion for the third object require six constants of motion for complete 
specification of the motion of the third body. Thus we need five more. The total 
angular momentum of the system is conserved, but it is entirely tied up in the 
motion of the two objects and thus is of little help here. The remaining five 
constants are simply not known, so that it is remarkable that we may say anything 
about the motion of the third object. 
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 b.  Zero Velocity Surfaces 
 
 Now  0v by definition so that Jacobi's integral places limits on where 
the third object may go depending on the value of C. Let us consider surfaces 
where v = 0, These are surfaces that provide bounds for the third object's motion, 
for the particle cannot cross them. For it to do so the square of the particle's 
velocity would have to change sign, Remembering that we can take ω = 1, we can 
write the expression for the zero velocity surfaces as 

2 ≥

 

C
r
2

r
)1(2)yx(

21

22 =
µ

+
µ−

++    .                          (8.1.8) 

 
Clearly the value of C must always be positive. Therefore consider the case where 
C >> 0. Then either or one of the radial distances [r)yx(C 22 +≈ l , r2] must be 
small. Thus either the third body is very close to one of the objects in a tight orbit 
about it or it is very distant and moves as if the pair was a point source. This is the 
solution most commonly found in nature, The zero-velocity surfaces would then 
consist of a cylinder normal to the x-y plane at some distance rather greater than 
the separation distance d and two smaller 'egg- shaped' surfaces close to each of 
the objects. These surfaces confine the motion to outside the cylinder or within 
the oval surfaces. As the value of C is decreased, the outer cylinder decreases in 
radius and the inner ovoids become bigger. As the value of C continues to 
decrease the two inner ovoids will touch at a point along the line joining two 
circularly revolving objects. Let this value be called C2 and the physical point in 
space labeled Ll. A particle confined within the ovoids will then be able to move 
from one to another as this "double point" no longer divides regions of space 
where v2 has opposite sign, As the ovoids continue to grow with decreasing C 
they join at Ll forming a hour glass shaped structure that grows to meet the 
shrinking cylinder. Eventually, as C takes on smaller and smaller values, the two 
regions will meet first along the line joining the centers and behind the less 
massive of the two principle masses. Let this value of C be called C3 and the 
corresponding spatial location be known as L2. The point that occurs behind the 
more massive of the two objects is known as L3 and occurs when C decreases to 
C4. A further decrease in the value of C causes the surfaces to separate into two 
comma shaped regions in the x-y plane which asymptotically approach two points 
when C becomes C5. These two points can be distinguished in that one leads the 
more massive object in its orbit while the other trails behind. They are called L4 
and L5 respectively. The Lis are collectively called the Lagrange points and have 
special significance. Figure 8.1 shows cross sections of these surfaces in the x-y 
and x-z planes. 
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Figure 8.1 shows the zero velocity surfaces for sections through 
the rotating coordinate system. The upper drawing shows the cross 
section through the x-z plane while the lower drawing shows the 
cross section of the x-y plane. The various values of C, as well as 
the location of the Lagrangian points of equilibrium, are indicated. 
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 c.  The Lagrange Points and Equilibrium. 
 
 In Chapter 5 [equation (5.3.4)] we defined a "rotational potential" to 
account for the centrifugal forces generated by the conservation of angular 
momentum. In a similar manner, we can define a new potential to take account of 
the rotation of the coordinate frame by including the energy resulting from the 
motion of the coordinate frame itself. Let this potential be 
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so that the total energy of the third body is 
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The forces acting on the third body will just be 
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Since the function v2 vanishes at the points where two zero velocity surfaces meet 
and , its gradient must also vanish on those surfaces. Thus the points of 
tangency represent places of equilibrium where all forces on the third body 
vanish. It remains to be established if those points represent stable equilibrium. 
Therefore the Lagrangian points may be found from 

0v2 ≥

( )
z
vvk̂

y
vvĵ
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Since each component of the vector must be zero separately, the equations of 
condition for the Lagrangian points are 
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Neither rl nor r2 is zero and 1≠µ so that the z-component of the gradient requires 
that z = 0 and that all the Lagrangian points lie in the x-y plane. If , then the 
y-component of the gradient requires that 

0y ≠
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This has a solution for 
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Since in the units we are using the separation of the two orbiting masses is unity, 
these points must lie at the vertices of equilateral triangles in the x-y plane having 
the line joining the two orbiting masses as a base. These are the points L4 and L5. 
Thus the Lagrangian points L4 and L5 lie in the orbital plane, leading and 
following the orbiting bodies by 60° at a distance equal to the separation of those 
two bodies. If we satisfy the conditions on the gradient by requiring both y and z 
to be zero, then the x-component of the gradient requires 
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and the remaining Lagrangian points will lie along the x-axis at the roots of the 
polynomic equation (8.1.16). In general, all solutions must be found numerically. 
However, Moulton8 (p.290) gives series solutions for the location of the 
Lagrangian points in terms of µ.  
  
 In order to test the nature of the stability of the Lagrangian points one need 
calculate 
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If this condition is satisfied for all of the coordinates, then each of the points 
represents a point of stable equilibrium. That is, if a particle is slightly displaced 
from the point, the particle will return to it. This is the case for L4 and L5. 
However, Ll, L2, and L3 are all unstable and an object displaced from anyone of 
them will continue to move away from them. Since the condition given in 
equation (8.1.17) is essentially the derivative of the forces acting on the particle, 
stable equilibrium requires that a small displacement generate a small negative 
force pushing the object back where it came from. A small positive force would 
continue to accelerate the particle away from its earlier location. The relative 
stability of the Lagrangian points can be seen from Figure 8.1. For Ll, L2, and L3 
the touching of the zero velocity surfaces joins two regions where the motion of 
the particle was previously confined. Thus particles can freely roam from one 
region to the other. A particle at one of these points could then move either way 
and would not be stable. However, Lagrangian points L4 and L5 represent the 
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'center' of a forbidden region where v2 < 0 so that the kinetic energy would have 
to be increased in order to move away from them. As the value of C is decreased 
so that the forbidden region shrinks to a point, that point can be occupied, but 
only by a particle with zero velocity. A small displacement would not provide the 
kinetic energy required for the particle to return to the point and the point would 
be stable. 
 
 The Lagrangian points are important in astronomy as they mark places 
where particles can either be trapped (L4 and L5) or will pass through with a 
minimum expenditure of energy. In the solar system there are two sets of 
asteroids known as the Trojan asteroids that lead and follow Jupiter about in its 
orbit oscillating about L4 and L5. In the theory of binary star evolution, the more 
massive component will expand as it ages until material meets one of the 
Lagrangian points. If that point is Ll, the matter will stream across the gap 
between the two stars and eventually be accreted onto the other member of the 
system. Should either L2 or L3 be encountered, the matter will pass through and is 
likely to be lost to the system entirely.  
 
 Much more could be said (eg. Moulton8) about the restricted three body 
problem as books have been written on the subject and some people have devoted 
their lives to its study. However, its most important aspects are bound up in the 
study of Jacobi's Integral and it is remarkable that so much can be said about the 
motion of the third body from knowledge of one integral of the motion. 
 
8.2  The N-Body Problem 
 
 After encountering the difficulties posed by the three body problem it 
must seem foolhardy to even consider larger systems. However, the universe is 
full of systems of many objects that are largely bound by their mutual gravity and 
we would like to understand as much about their dynamics as possible. Let us 
begin by determining the equations of motion for such a system. We can do this 
as we did for central forces and the two body problem by calculating the 
Lagrangian. Thus, 
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The equations of motion are therefore 
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
= ∑

≠ij
3
ij

jij
i2

1
ii

d

)rr(m
Gmrm

rr
&&r    .                              (8.2.2) 

 
 
 
 
 

119



 
Summing these equations over all the particles we get 
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Now since 
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we may pair the terms in the double sum on the right hand side of equation (8.2.3) 
so that they individually cancel to zero leaving 
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This equation can be directly integrated twice with respect to time to get 
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The left hand side of this equation is the definition of the center of mass and the 
vectors on the right hand side have six linearly independent components. Thus, 
even for a dynamical system of N particles, the center of mass will move with a 
uniform velocity. However, N second order vector equations will require 6N 
constants of integration in order to uniquely specify the motion of the particles 
and finding six seems of little help.  
 
 Taking the cross product of a position vector with the equations of motion 
we can write 
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we can again sum equation (8.2.7) over all the particles and pair the terms under 
the double sum of the right hand side so that they vanish to zero. Thus we may 
write 
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and find that the total angular momentum of all the particles will be constant. 
Thus we add three more constants of the motion to our total. We also establish 
that there will be a fundamental plane of the system that is perpendicular to the 
total angular momentum vector. Similarly we can invoke the conservation of the 
total energy to get a last constant of the motion as 
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 Thus, as was the case with the three body problem, we have 10 integrals of 
the motion, far short of the 6N needed to complete the solution. In addition, all of 
these constants of the motion are global. That is, they refer to properties of the 
total system and tell us little about the motion of individual particles. However, 
there is one more global condition that is of considerable help in understanding 
the history of the system. 
 
 a.  The Virial Theorem 
 
 The virial theorem, as it is commonly called in the literature, takes on 
many forms. However, all of them have in common a relationship whose origins 
are in the equations of motion for the system. We will generate only the simplest 
of these relationships, namely that appropriate for particles moving under the 
influence of the gravitational force. A derivation for an arbitrary central force law 
is given by Collins9. The general equations of motion for such a system of 
particles are given in equation (8.2.2). Now take the scalar product of those 
equations with a position vector to each object in the system and sum over all the 
particles so that 
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We can rewrite the central part of equation (8.2.11) so that 
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where T is the total kinetic energy of the system. We have also rewritten the left 
hand side of equation (8.2.11) to explicitly show the pairing of terms for the force 
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of ith particle on the jth particle with the force of the jth particle on the ith 
particle. The first term in square brackets is a "moment of inertia"-like term only 
instead of it being a moment of inertia about an axis it is the moment of inertia 
about the origin of the coordinate system. Let us call this quantity I so that 
equation (8.2.12) becomes 
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The term on the far right is the negative of the potential energy of the system so 
that 
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Some call this the virial theorem, but it is more correctly known as Lagrange's 
identity even though Lagrange only proved it for the case of three bodies. Karl 
Jacobi generalized it to a system with N-bodies and it is clearly an identity. That 
is, it is very like a conservation law as it must always be true for any dynamical 
system. Now if one integrates Lagrange's identity over time, one can write for 
stable or bound systems that 
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This result also holds if the system is periodic and the integral is taken over the 
period of the system, since the system must return to an earlier state so that the 
moment of inertia and all its derivatives are the same at the limits of the integral. 
Equation (8.2.15) is known as the time-averaged form of the virial theorem (or 
generally just the virial theorem) and provides an additional constraint on the 
behavior of the system. 
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 b.  The Ergodic Theorem 
 
 The ergodic theorem is in the category of concepts that are so basic that 
they are never taught, but are assumed to be known. For that reason alone, it is 
worth discussing. Ergodic theory constitutes a major branch of mathematics and 
its physical application has occupied some of the best minds of the twentieth 
century. The theorem from which this branch of mathematics takes its name 
basically says that the average of some property of a system over all allowed 
points in phase space is identical to the average of that same quantity over the 
entire lifetime of the system. To explain this and its implications, we must first 
say what is meant by phase space. 
 
 Consider a 6-dimensional space where the coordinates are defined as the 
location and momentum of a particle. The coordinates of the particle in such a 
space specify its position and momentum, which requires the six components of 
its location in phase space. These six components constitute the six constants 
required for the solution of the Newtonian equations of motion. Thus locating a 
particle in phase space fixes its entire history - past and future and thus determines 
the path that the particle will take through phase space as it moves. However, not 
all points in phase space are allowed to the particle, for its total energy cannot 
change and there are points in phase space that correspond to different total 
energies for the particle. Thus, the path of the particle in phase space will be 
limited to a "space" of one lower dimension - namely one where the total energy 
is constant. Quantities that limit the phase space available to the motion of a 
particle are said to be isolating integrals of the motion and certainly the total 
energy is one of them. If we are dealing with the' motion of a single particle in an 
arbitrary conservative force field, its angular momentum will also be an isolating 
integral. 
 
 Thus, the ergodic theorem says that a particle will reach every point in the 
phase space allowed to it during its lifetime so that the path of the particle will 
completely cover the space. Therefore averages of quantities taken over the space 
are equivalent to averages taken over the lifetime. This seemingly esoteric 
theorem is of fundamental importance to physics. In thermodynamics we make 
predictions about time averages of systems but can observe only phase space 
averages. Thus to relate the two, it is necessary to invoke the "Ergodic 
hypothesis" -namely, that the ergodic theorem applies to thermodynamic systems. 
The best justification for this hypothesis is that thermodynamics works! 
 
 Unfortunately, the ergodic theorem has never been proved in its full 
generality, but sufficiently general versions of it have been proved so that we may 
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use it in science. This allows us to replace the time averages that appear in 
equation (8.2.15) with averages over phase space. This is fortunate as the average 
astronomer doesn't live long enough to carry out the time averages required to use 
the virial theorem. The difficulty in applying the virial theorem is in deciding 
exactly in what subspace is the system ergodic; that is, in deciding how many 
isolating integrals of the motion there are and what are they. Without that 
information, we cannot determine how to carry out the averages over the 
appropriate phase space. 
 
 What sorts of things might we want to average? Clearly for the virial 
theorem we would like to know the average of the kinetic and potential energies 
for if they do not satisfy equation (8.2.15), the system is not stable and will 
eventually disperse. Conversely, if the system is adjudged to be a stable system, 
the average of one of these quantities, together with the virial theorem, will 
provide the other. This is often used to determine the mass of stable systems. 
 
 
 c.  Liouville's Theorem 
 
 We conclude our discussion of the N-body problem with a brief discussion 
of a theorem that deals with the history of an entire system of particles. To do this, 
we need to generalize our notion of phase space. Consider a space of not just six 
dimensions, but 6N dimensions where N is the number of particles in the system. 
Each of the dimensions represents either the position or momentum of one of the 
particles. As there was need of six dimensions for a system consisting of one 
particle, the 6N dimensions will suffice to specify the initial conditions for every 
particle in the system. Thus, the system represents only a point in this huge space, 
and the space itself is the space of all possible systems of N particles. Such a 
space is usually distinguished from phase space by calling it configuration space. 
The temporal history of such a system will be but a single line in configuration 
space. Liouville's theorem states that the density of points in configuration space 
is constant. This, in turn, can be used to demonstrate the determinism and 
uniqueness of Newtonian mechanics. If the configuration density is constant, it is 
impossible for two different system paths to cross, for to do so, one path would 
have to cross a volume element surrounding a point on the other path thereby 
changing the density. If no two paths can cross, then it is impossible for any two 
ensembles ever to have exactly the same values of position and momentum for all 
of their particles. Equivalently, the initial conditions of an ensemble of particles 
uniquely specify its path in configuration space. This is not offered as a rigorous 
proof, but only as a plausibility argument. More rigorous proofs can be found in 
any good book on classical mechanics.  
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 The ergodic theorem applies here as well, for if any two systems ever 
cross in configuration space, they must in reality be the same system seen at 
different times in its dynamical history. Clearly the paths of systems with 
different total energies can never cross in accord with Liouville's theorem, but 
will cover the subspace allowed to them in accordance with the ergodic theorem. 
 
 These three theorems are powerful products of the great development of 
classical mechanics of the nineteenth century. They give us additional and 
rigorous constraints that apply to systems with any number of particles and they 
lie at the very foundations of modern physics. They are basically statements of 
conservation laws and the determinism of Newtonian physics. 
 
 
8.3  Chaotic Dynamics in Celestial Mechanics 
 
 Theoretical physics has had a difficult time, in general, describing 
phenomena that exhibit some degree of order, but not complete order. Total 
disorder can be dealt with and thermodynamics is an example of highly developed 
theoretical structure that deals with gases whose constituents show totally random 
behavior. Classical mechanics describes well ordered systems with great success. 
However, intermediate cases are not well understood. This weakness in 
theoretical physics can be found throughout the discipline from the theories of 
radiative and convective transfer of energy, to "cooperative phenomena" in stellar 
dynamics. We have seen from our study of the N-body problem that non-periodic 
solutions and ergodic paths in phase space can result. The solar system is an N-
body system, yet it clearly displays a high degree of order. Might not we expect 
some aspects of it to behave otherwise? 
 
 The space program of the 1960s and 1970s brought us detailed 
photographs of various objects in the solar system whose dynamical behavior 
proved to be far more complicated than was previously imagined. The rings of 
Saturn proved to be more numerous and structured than anyone believed possible. 
One of the Saturnian satellites (Hyperion) appears to tumble in an unpredictable 
manner. The rings of Uranus have a structure that most astronomers would have 
thought was unstable. This list is far from exhaustive, but begins to illustrate that 
there are many problems of celestial mechanics that remain to be solved. One of 
the most productive approaches to some of these problems has been through the 
developing mathematics of Chaos. In the area of dynamics, chaotic phenomena 
are those that, while being restricted in phase space, do not exhibit any 
discernable periodicity. Wisdom10 has written a superb review article on the 
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examples of chaos in the dynamics of the solar system and we will review some 
of his observations.  
 
 In the nineteenth century Poincare showed that integrals of the motion 
usually do not survive orbital perturbations. Thus, closed form integration of 
perturbed orbits will not, in general, be possible. However, a more recently 
proved theorem known as the KAM theorem shows that for small perturbations, 
orbital motion will remain quasi-periodic. Thus the simple loss of the integrals of 
the motion does not imply that the dynamical motion of the object will become 
unrestrained in phase-space and be ergodic. This somewhat surprising result 
implies that we might expect to find orbits that are largely unpredictable but 
remain confined to parts of phase space. Wisdom points out that the phase space 
accessible to a system with a given Hamiltonian may depend critically on the 
initial conditions. For some sets of initial conditions, the motion of the system 
will be quasi-periodic, and the system will be confined to a relatively small 
volume of phase space. For modest changes in the initial conditions, the motion of 
the system becomes chaotic and completely unpredictable. It is a characteristic of 
such systems that the transition from one region to another is quite sharp. A 
similar situation is seen in thermodynamics when a system undergoes a phase 
transition. Here the mathematics of Chaos has been relatively successful in 
describing such transitions. 
 
 A simple example of such a dynamical system can be found in the 
restricted three body problem. From Figure 8.1 it is clear that an object orbiting 
close to one or the other of the two main bodies will experience nearly elliptical 
motion that is certainly quasi-periodic. However, for values of C of the order of 
C3 the motion is barely confined and numerical experiments show that the orbits 
wander over a large range of the allowable phase space in a non-periodic manner. 
Thus with chaotic behavior being present in such a relatively simple system, we 
should not be surprised to find it in the solar system. While analysis of such 
systems is still in its infancy, we know enough about the mathematics of Chaos to 
be confident that it will lead to a more complete understanding of non- linear 
dynamical systems. We are once again reminded that the future of theoretical 
physics can be seen "through a glass darkly" in the developing mathematics of the 
present. 
 
 
 
 
 
 

 
 
 
 
 

126



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

127



Chapter 8: Exercises 
 
1. Show that the Lagrangian points L4 and L5 are points of stable equilibrium 

while the Lagrangian points L1-L3 are not. 
  
2. Derive the virial theorem for an attractive potential that varies as 1/r2. 
 
3. Show that the virial theorem has its normal form even if there are velocity 

dependent forces present. 
 
4. How many isolating integrals of the motion are there for the case of just two 

orbiting bodies? What does this mean for the application of the ergodic 
theorem to the virial theorem? 
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